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Introduction. 
 
This collection includes most of the programs written by the author while attending engineering 
school, many moons ago. The subjects comprise diverse areas in mechanical and electrical 
engineering, ranging from very simple code snippets to more sophisticated structures and algorithms. 
 
The collection is spread across four plug-in modules, each 8k in size. The modules also include a few 
programs from the European User’s Library and other sources, dealing with similar or complementary 
topics.  Some of these programs (but not all) are also documented in this manual. A top-level rough 
categorization of the collection sections follows: 
 

• ETSII-3A – General Thermodynamics and Steam properties 
• ETSII-3B – Steam properties and Liquefaction Cycles 
• ETSII-4A – Fluid Dynamics and Water Pumps 
• ETSII-4B – Dynamic Balancing, Mechanical methods and Heat Transfer 
• ETSII-5A – Electrical Engineering (mostly power systems) 
• ETSII-5B – Circuit and Ladder Analysis 
• ETSII-6A – Control Systems and Numerical Methods 
• FORFEE  – Air Conditioning Loads and Water Well Profiling 

 
Back then documentation wasn’t something I spent much time on, so now (30 years later) it’s been a 
bit challenging remembering all the intricacies of the programs. I’ve tried to include the most relevant 
points of each program, as well as provide application examples to guide the users. Still, there are a 
few programs I don’t have a real inkling of their exact purpose, let alone how to use them. 
 
 
Module Dependencies. 
 
Each module is independent from the others, and contains most of the resources needed; such as 
dedicated MCODE functions and subroutines. The programs make profuse utilization of extended 
functions; thus you need the X-Functions module or (better yet) a CX. Obviously you’ll benefit 
immensely using the 41CL or an emulator in turbo speed, in particular for those programs requiring 
more number-crunching resources. 
 
Besides that, some programs use routines from the “Unit Conversion” module, a stand-alone ROM 
based on HP’s Unit Management Facility (UMF) although strongly enhanced with electrical units and 
user-friendly catalogs and routines. This is especially useful for subjects involving thermal 
magnitudes, where the units frequently get in the way of the solution and are a source of errors. 
 
Another common thread is the use of utility functions from the AMC_OS/X module – I simply 
couldn’t resist enhancing the U/I and data entry routines. The benefit is not only cosmetic, as the 
numerous byte savings have been instrumental to add more programs in the modules.  
 
Finally, the SandMath module is also required for a few cases, like the Bessel functions used in the 
Heat transfer section. Note however that the ETSII modules have built-in FOCAL root-finding and 
integration routines, which (with few exceptions) are used instead of SOLVE/INTEG from the 
advantage (or FROOT/FINTG from the SandMath). 
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Orbital Trajectories. [GRVTY ] 
From the author’s Engineering Collection, included in the ETSII3 module. 
 
 
These short routines calculate a few parameters 
of orbital trajectories when the radius “Ro”, 
gravity constant “go “and distance from earth 
“r” values are known.  
 
In addition to the planet’s radius Ro and 
surface gravity (go), for elliptical orbits 
typically the known values include the perigee 
(p) and apogee (h) of the orbit  - therefore the 
ellipsis major axis can be  determined with the 
expression:  a=  2Ro + p + h 
 
The initial choice is for the type of unknown, either the orbit eccentricity, the period or the 
velocities – each one of them also requiring additional data input values as per the table 
below.  

Eccentricity “e” Period “T” Velocities “C:E:H:P” 
Initial angle Major semi-axis Major axis -> Ve 

Initial velocity  Eccentricity -> Vh 
 
Let “r” the distance to the surface of the planet and  “α" the angle of the launch velocity 
vector and the tangent to the orbit (or horizon from earth). The formulas used are as follows: 
 

Eccentricity: e = sqrt { 1 + [ Vo
2 – 2go.(Ro

2/r) ].[ r Vo cos α / go.Ro]
2 } 

Elliptic orbit: Ve = sqrt {2(2a - r).[go. Ro
2] / r} 

Hyperbolic: Vh = sqrt{(1+e).[go. Ro
2] / r} 

Parabolic: Vp = sqrt{2 go. Ro
2 / r} 

Circular: Vc = sqrt {go. Ro
2 / r} 

Period:  T = (2π/ Ro) sqrt[a3 / go] 
 
Example. 

A satellite is orbiting earth in an elliptic orbit with 1,120 km apogee and 120 km  perigee. 
Using Ro=6.380 km determine the new eccentricity if its velocity changes to 9,596 m/s 
forming an angle or 4.1 deg over the horizontal, when the distance from earth is r = 6,964.43 
km  
 
The solutions are: 
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Planar Movement Study. [ MVPLN ] 
From the author’s Engineering Collection, included in the ETSII3 module. 
 
 
For rigid bodies experiencing general plane 
motion (in two-dimensions), the concept of 
instant center allows one to conveniently 
calculate the unknown angular velocity of the 
rigid body, or unknown linear velocities of points 
on the rigid body. The instant center is an 
imaginary point that allows for a mathematical 
“shortcut” in calculating these unknowns. 
 
The program characterizes the acceleration pole for a two-body configuration, when the 
kinematic properties are known. The first distinction is whether both the fixed and moving 
centrodes (i.e. locus of the instant centers of rotation) are on the same side of the common 
tangent. Other known data values are the rotation speed and the radius of each curve, as well 
as the acceleration of the instant center. 
 
The results include the succession velocity of the instant center of rotation, Vs, the inversion 
and inflexion diameters, and the position of the rotation pole (magnitude and angle). The 
equations used as shown below: 
 
Let Ro and R be the radius of the fixed and moving centrodes, ω the angular velocity of the 
body, ω’ the acceleration at the instant. The formulas used are as follows: 

Vs = ω Ro.R / (Ro+R) 
|pole| = ω.Vs / sqrt{(ω’)^2 + ω^4 } 
Pole<) = atan [ ω^2 / ω’ ] 
Dinver  = 2 (w Vs/ω’) cos θ 
DInflex = 2 (Vs/ω) sin θ 

 
 
Example.  

Characterize the motion parameters for a planar mechanism with centrodes at different 
sides, rotation at an angular velocity of 24 rad/s, and an angular acceleration of 139.36 
rad./s^2 if the radius of the fixed and moving centrodes are 12 and  6 m respectively. 
 
The solutions are: 
 
Vs = 96  
D. Inversion = 16.5327 m 
D Inflexion = 4 m 
Acceleration Pole located at:  3.8878 <)76.3990 
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Holzer method for natural vibrations.  [ HOLZER ] 
From the author’s Engineering Collection, included in the ETSII4 module.  

 
 
This program calculates the natural vibration 
frequencies of a semi-definite mechanical 
system with N degrees of freedom using the 
Holzer method.  
 
The vibration can be linear (lineal 
displacements in the springs) or torsional 
(angular displacements in the shaft). The vibration modes are also obtained for each natural 
frequency. 
 
The natural frequencies w are the roots of the frequency function, defined as follows: 
 

g(w) = w^2 Σ Ij Dj(w) ; j= 1, 2,… N 
 

Where Dj is also a function of w and of the previous displacements, according to the 
expression: 
 

Dj = Dj-1 – [ w^2/Kj-1] Σ  In Dn  ; n= 1, 2,.. j  and D1 =1 
 

The terms Kj represent the stiffness constants (elastic or torsional) in the unions between the 
element masses – typically springs or the shaft depending on the case. 
 
The program offers an initial approximation for the main natural frequency that can be used 
as guess for the root-finding routine – which is included in the module as well. 
 
 
Examples. 
 
Calculate the first three natural frequencies and modes of oscillation for a system of 5 rotors 
connected by a shaft, knowing that the angular momentum is I = 1 kg.m^2 for all of them. 
The torsional stiffness of the shaft is k = 2 N.m 
 
The solutions are shown on the table below: 
 

w m1 m2 m3 m4 m5 
w1 = 0.8740 1 0.618 0 -0.618 -1 
w2 = 2.2882 1 -1.618 0 1.618. -1 
w3 = 2.6900 1 -2.618 3.2361 -2.61 1 
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Sag and Tension in Overhead Lines. [ CAMELA ] 
From the author’s Engineering Collection, included in the ETSII5 module. 
 
 
This program calculates the sag and tensions at 
the supports of overhead line cables, with or 
without equileveled conditions. The conductor 
adopts a catenary shape in either case, but the 
different geometric conditions require different 
methods to resolve the unknowns. 
 
Besides the slope, posts height and span length 
the input data includes the minimum 
(perpendicular) distance to the ground, which 
occurs at the point of maximum deflection of the cable, thus limiting the maximum sag. 
 
Let V = span length;  H = posts height;  m = tanθ = inclination slope; d = minimum distance 
(safety) 
 
For level spans the maximum sag occurs at its middle point, with a symmetric catenary curve 
centred there (xf = 0). Thus the coordinates of posts are Xa = -L/2 and Xb = L/2. The curve 
equation in that case is: 
 

(H – d)  = α [1 +  ch(-V/2α) ]  
 

For unlevel spans, the following two equations are used to calculate the values Xa and Xf, 
the coordinates of the post at lower slope and the point of maximum sag: 
 

(1) V m = (xf /ash m) { ch (A)  ch (B-1) + sh (B) sh (A) }  
(2)  f = m(xf - xa) + (xf / ash m) [ ch(A) – ch(ash m)] 

Where:  A = Xa ash m / Xf  ;  B = V ash m / Xf ;  and  f= H – d /cosθ is the maximum sag. 
 
Solving this system for Xa and Xf determines the rest of unknowns, such as Xb = L –|Xa|;   
The resolution is done numerically using “SLV2”, a built-in routine to solve non-linear 
systems of two equations.  
 
The program output includes both geometry and stress results. The geometry results are the 
X-coordinates of each post referred to the point of maximum deflection (x=0), and the alpha 
parameter of the catenary curve. 
 
The stress results require the unitary weight of the cable (q) , returning the horizontal tension 
in the supports (Ta, Tb) and maximum sag point (T0), as well as and the total length of the 
cable (L). The expressions used are derived from the basic catenary, as follows:  
 

T = q α ch x/α;   αnd:    L = [sh xb / α - sh xa / α ] 
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Example.  
 
Calculate the tensions in the supports for an overhead power line with 100 m span length, 
with 42 m height posts and a minimum perpendicular distance to ground of 10 m. Do both 
cases of level span and 20 deg inclined span to compare the results. The unitary weigh is 10 
kg/m. 
 

Level span xa = -50 xb = 50 α=43.5470  
q = 10 kg/m TA=755,4702 TB=755,4702 T0=435,4702 L=123,4667 
Inclined 20 deg XA=-42,8106 XF=8,7983 α = 44.2816  
q = 10/kg/m TA=666,3870 TB=866,3870 T0=442,8156 L=124,2657 

 
 
 
Hyperbolic Functions. [ SINH, COSH ] 

 
Included in the module are stand-alone MCODE routines to calculate the hyperbolic sine and 
cosine. They use 13-digit math subroutines from the OS for enhanced accuracy. Just enter the 
argument in X, execute the function and the result is placed in X (stack is lifted) and the 
original argument is saved in LastX. 
 

Header AFD0 088 "H"
Header AFD1 00E "N" sh(x)=1/2[e^x-e^-x]
Header AFD2 009 "I"
Header AFD3 013 "S" Ángel Martin
SINH AFD4 248 SETF 9

AFD5 033 JNC +06 [MAIN]
Header AFD6 088 "H"
Header AFD7 013 "S" ch(x)=1/2[e^x+e^-x]
Header AFD8 00F "O"
Header AFD9 003 "C" Ángel Martin
COSH AFDA 244 CLRF 9
MAIN AFDB 0F8 READ 3(X) Go noisy!

AFDC 361 ?NC XQ (this includes SETDEC)
AFDD 050 ->14D8 [CHK_NO_S]
AFDE 044 CLRF 4
AFDF 029 ?NC XQ
AFE0 068 ->1A0A [EXP10]
AFE1 089 ?NC XQ e^x
AFE2 064 ->1922 [STSCR]
AFE3 239 ?NC XQ e^-x
AFE4 060 ->188E [ON/X13
AFE5 24C ?FSET 9 true if SINH
AFE6 01B JNC +03
AFE7 2BE C=-C-1 MS Sign change
AFE8 11E A=C MS ditto in A
AFE9 0D1 ?NC XQ e^x
AFEA 064 ->1934 [RCSCR]
AFEB 031 ?NC XQ
AFEC 060 ->180C [AD2-13]
AFED 04E C=0 ALL
AFEE 35C PT=12 build "2" in C
AFEF 090 LD@PT- 2
AFF0 269 ?NC XQ
AFF1 060 ->189A [DV1-10]
AFF2 331 ?NC GO Overflow, DropST, FillXL & Exit
AFF3 002 ->00CC [NFRX]  
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RPM-Torque-Power. [ RPMTP ] 
From the author’s Engineering Collection, included in the ETSII4 module. 
 
 
HP-41 version of the program first available for HP-
29/19C solutions. A classic mini-equation solver for 
one of the three variables with the other two known.     
 
P = w M, with:   
w=  rpm*2π/60 in rad/s  and 
 M = torque in N.m 
 
Two unit systems are possible: SI and British. Answer 
Y/N to the “S.I.?” Prompt to select.  
 

     
 

     
 
Not much to add here, just follow the prompts to select the choices provided by the 
calculator. The calculation can be repeated for multiple values of the variables and different 
choices of the unknown. 
 

S.I. British 
rpm rpm 
N.m ft.lb 
W hp 

 
 
Example: 
 
Calculate the power in watts for a torque of 20 Nm and angular speed of 50 rpm 
 
The solution is P = 11 kW 
 
Note. Using the “Unit Management System” included in the Unit Conversion Module is a 
vast superior approach to perform unit conversions like this one. 
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Simple beams: Reactions in Supports. [ R2SP ] 
From the author’s Engineering Collection, included in the ETSII4 module. 
 
 
This program calculates the reactions in the supports 
of a simple beam subjected to any combination of the 
following efforts: point, uniform, triangular loads and 
external moments. Trapezoidal loads can be expressed 
as a combination of a uniform load plus a triangular 
one. 
 

     
 
The program will prompt for the load type to enter next, with the following message 
“LOAD? P:U:T:M:R”. Press the corresponding key for each load type and use it as many 
times as loads exist, then press “R” to calculate the reactions. 
 
The supports can be placed at any two points along the beam’s distance - xa, xb - taking the 
left end as origin of coordinates. 
 
The expressions used by the program are a straight application of statics. Let Ra and Rb be 
the reaction in the supports; Pj and Mj the different point loads and external moments, 
applied at a distance xj.(j=1,2…n). Let q be the load per unit length of uniform and triangular 
loads applied between distances (x1,x2), and “m” the slope of the triangular load. Then we 
have: 
 

(1)   Σ F  = Ra + Rb + Σ q (x2-x1) + Σ q/2 (x2 - x1)^2  
 

(2)   Σ Mj  = xa Ra + xb Rb + Σ x Fj + Σ q/2 (x2^2 – x1^2) +   
             + Σ {[ m (x2^3 – x1^3)/3 – (m x1 /2) (x2^2 – x1^2) ] }   

 
 
Example. 
 
Calculate the reactions in the supports of a simple bean with the following configuration: 
 
Xa = 2 m, Xb = 6m;    
External moment M1 = 200 N.m (clockwise is positive) 
Uniform loads q1=120 N/m between x1=1 and x2=3 
Uniform load q2 = 300 N/m between x1=3 and x2=4 
Triangular load between x1=6 and x2=7, with final value of q3=100 N/m 
 
The results are: 
R1 = 485, 84 N 
R2 = 4, 1667 N 
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Dynamic Balancing in 1 and 2 planes. [ by Eugenio Úbeda ] 
From the author’s Engineering Collection, included in the ETSII4 module. 
 
 
These programs can be used to 
characterize the rotating vibrations in trial 
tests (vector coefficients in g/s) and to 
calculate the corrective weights to 
compensate for torsional vibrations in 
stationary regimes. The programs allow 
for single or two-plane corrections, where 
typically the single plane is restricted to 
systems with shafts not longer than their 
diameters. 
 
For Single-plane balancing the required data are the initial vibration (µm), the trial weight  (g  
<) deg) and the resulting trial vibration.  
 
For 2-plane balancing, the required data are the initial vibrations on each plane, but the trial 
tests are only needed if the system coefficients are not already known. The results obtained 
from the trial tests can be saved in an X-Memory file and reused repeatedly in successive 
iterations of the corrective weight calculations (magnitude and position). These iterations can 
be repeated as often as required until the final vibration is within the accepted limits. The 
program also offers the possibility to enter the characteristic coefficients matrix manually – 
should their values are known but not currently in the X-Mem file.  
 
Data entry is expected with the magnitude first, and then the position - separated by 
ENTER^. The angles are referred to the chosen origin and must follow a consistent 
convention as per their orientation. This applies equally to the vibrations (initial and actual) 
and weights (total and correcting). 
 
 
Example1.  
 
Using the 1-plane balancing method, calculate the corrective weight and its position to 
compensate for an initial vibration measured like 155 µm at 30 degrees. The trial test was 
made using a weight of 200 µm at 0 deg position, which caused the trial vibration to be 35 
µm and 120 deg. 
 
The results are shown below: 
 
Vector coeff :  S1 = 1.258634 <) 342.724356 
Correcting weight: W1 = 44 <) 103 
 
If the measured residual vibration is still V = 12 <)130. 
Running a second iteration results in the additional results below: 
 
Vector coeff :  S2 = 1.892619 <) 347.860674 
Correcting weight: W2 = 23 <) 118 
Total weight:  Wt = 190 <) 19 
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Example2.  
 
Using the 2-plane balancing technique calculate the corrective weights and their positions to 
compensate for initial vibrations measured on each plane as: 7 µm at 80 degrees and 5 µm at 
130 deg.  The trial tests were made using weights of 375 µm at 1800 deg position on each 
plane, which caused the trial vibrations to be as shown below: 
 

Trial weights Plane-1 vibration Plane-2 vibration 
375 <) 180 in Plane 1 10.2 <) 25 8.5 <)15 
275 <) 180 in Plane 2 13 <) 50 9.5 <) 10 

 
Results. The program calculates the system vector coefficients, which get stored in an X-
memory file named “COEFFS”. This file can be used later instead of the trial tests, as it 
characterizes the unbalance behavior of the system. 
 

S11 = 64.768616  <) 73.384289 S12 =39.451436  <) 286.455879 
S21 = 58.588379 <) 255.104623 S22 = 42.819398 <) 65.392443 

 
And the correcting weights are shown below: 
 

P1’ = 472 <) 129 
P2’ = 283 <) 306 

 
If the measured residual vibrations are still V1 = 1 <)85  and:  V2 = 2.5 <) 110 
Running a second iteration results in the additional results below: 
 

P1” = 85 <) 77 
P2” = 53 <) 192 

  
For an equivalent total corrective weight of: 
 

Pt1 = 529 <) 122 
Pt2 = 266 <) 295 

  
 
Note: The program includes 4 functions to perform arithmetic operations in polar mode, with 
the complex numbers entered in the stack registers as two pairs of {argument, ENTER^, 
module}; like in the standard P-R convention of the calculator. Their names are “W+”, “W-“ 
“W*”, and “W/”.
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2D Temperature Distribution in vertical plates. [ TXY ] 
From the author’s Engineering Collection, included in the ETSII4 module. 
 
 
This program calculates the temperature distribution T,(x,y) within 
a rectangular vertical plate with dimensions (b x h); with three 
sides maintained at a constant temperature T0, and with a known 
temperature distribution on its upper side - either constant T2 or 
varying with x -  T(x,h).  
 
Therefore it’s said that the plate is immersed in a uniform ambient 
temperature T0, while the fourth side is maintained at another 
constant temperature or temperature distribution. 
 
The expression used is based on an infinite sum as follows: 
 

T(x,y) = T0 + 2/b Σ T(n,x)  ; n= 1,2,.... 
 
with the following general term, where λn = π n / b 
 
Tn(x,y) = sh (λn.y). sin (λn.x) / sh (λn.h)  INTG { T(x,b) – T0] sin λn t} dt ;  between [0, b] 
 
The numerical integration is done using the ITG routine also included in the module. 
 
 
Example:  
 
Calculate the temperature in the points P(1, 2) and Q(2, 3) within a flat plate of dimensions 
(2 x 5) m, with a temperature distribution on its top side given by the function: t(x,5) = x^2 + 
10 deg C. The ambient temperature is t0 = 10 deg C. Compare the result with the case of a 
constant temperature on the top side t(x, 5) = 100 deg C. 
 
The solutions are shown below. 
 

Point T(x,5)=100 T(x, 5) = x^2 + 10 
P(1, 2) T(1, 2) = 10.0239 C T(1, 2) = 10,01357914 
Q(2, 3) T(2, 3) = 10 T(2, 3) = 10,00 

 
The temperature function for the second case can be easily programmed: 
 

01  LBL “TX” 
02  X^2 
03  10 
04  + 
05 END 
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Transients in wide plate with step temperature change [ TXT ] 
From the author’s Engineering Collection, included in the ETSII4 module. 
 
 
This program calculates the temperature 
T(x) in points x of an infinite flat plate 
with finite thickness (2L), after 
experiencing a thermal shock - or 
sudden change of ambient temperature, 
from T0 initial to Tf final.  
 
The Biot number is provided indirectly, 
by means of the heat transfer (or film) 
coefficient: h= Bi.K/L. The thermal conductivity (K) and thermal diffusivity (α) must also be 
known, where: α = K / ρ.Cp  - i.e. thermal conductivity over the density and specific heat 
capacity. 
 
The resulting temperature is expressed as an infinite sum as follows: 
 

T(x,t) = Tf + 2 (T0-Tf) Σ { f(x, n) exp[-αt.(λn/L)^2 ]} ;   n = 1,2,... 
 

With:  f(x,n) = sin (λn) .cos (λn.x/L)] / [ λn + sin (λn) cos (λn)  
 
And (λn) are the n roots of the equation defined by:   tan (λn) = Bi /(λn) 
 
Which in the program has been replaced by its equivalent form: 
 

(-1)^n  cos(λn) + λn/[sqrt(λn)^2+Bi^2] = 0 
 
Solved using the SLV routine, using the truncation of the tangent to its first two terms and 
using as initial guess:  (λn)init = π(n-1) + sqr{ (3/2) [ sqr (1+4h/3) – 1] } 
 
 
Example. 
 
A 20 cm thick wide plate has a uniform temperature of 1,000 deg C. It is suddenly immersed 
into a cooling fluid stream at 50 deg C. Calculate the temperature in its center and outer 
boundary one. two and three hours after the sudden step temperature change. The physical 
properties of the material are given below: 
 
α = 1.66 E-6 m^2/s 
h = 20,000 kcal/H.m^2.C = 23,260.0 W/m^2 K   
K = 100 kcal/h.m.C =  116.30 W/m.K  
 
The results are shown in the table below: (warning: very slow convergence!) 
 

Point t = 1 hour t = 2 hours t = 3 hours 
center (x=0 cm) 366.5400 133.0300 71.8500 
Outer edge (x=0.1 m) 73.5600 56.2700 51.7100 
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Transients in long cylinder with step temperature change [ TRT ] 
 
 
This program calculates the temperature T(r) in points r of an infinite cylinder of radius R, 
after experiencing a thermal shock – or sudden change of ambient temperature, from To 
initial to Tf final. 
 
Similar to the previous case, the Biot number is calculated from its constituent factors. The 
same data entry process is used like in the infinite plate, only now it is cylindrical symmetry 
instead. 
 
The resulting temperature is expressed as an infinite sum as follows: 
 

T(x,t) = Tf + (T0-Tf) Σ (2/λn) { f(n, r) exp[-α.t.(λn/R)^2 ]} ;   n = 1,2,... 
 

With: f(n,r) = J1(λn). J0(λn.r/R) / [ J1
2 (λn) + J0

2(λn)] 
 
And (λn) are the n roots of the equation defined by:   (λn) J1(λn)  = Bi J0(λn) 
 
Which, leaving the Biot number alone in 
the second term, can be expressed as the 
intersection of the Biot number with the 
function x.J1(x)/J0(x), shown in the 
graphic on the right, where the asymptotic 
boundaries will provide a reasonable 
criteria for the estimations needed by the 
root-finding routine, as follows: 
 
(λ1) is between ]2, 4] 
(λn+1) is between ](λn)+1, (λn)+4] 
 
 
Example. 
 
A very long metal rod of radius R=0.14 has a uniform temperature of 1,000 dec C. It is 
suddenly immersed into a cooling fluid stream at 50 deg C. Calculate the temperature in its 
center and outer boundary 15, 30 and 60 minutes after the sudden step temperature change. 
The physical properties of the material are given below: 
 
α = 1.66 E-6 m^2/s 
h = 20,000 kcal/H.m^2.C = 23,260.0 W/m^2 K   
K = 100 kcal/h.m.C =  116.30 W/m.K  
 
The results are shown in the table below: (warning: very slow convergence!) 
 

Point t = 15 min t = 30 min t = 1 hour 
center (x=0 cm) 945.7185485 704.2922460 343.4690201 
Outer edge (x=0.14 m) 102.5288706 80.51769740 63.05841690 
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A few remarks about the implementation. 

By direct inspection of the plot in previous page it’s clear that this case is much more 
demanding on the root-finder algorithm than the previous one. As the Biot number value 
increases, the intersection with the graphic will occur in zones with a very steep slope, 
making the identification of the root very tricky – so much so that the FOCAL routine “SLV” 
is not adequate and misses the roots, even if very fine-tuned search intervals are provided – 
which is also a difficult affair. 
 
To search for each of the λn roots, the program uses the symmetric intervals centered at the 
initial estimation and with distance “one”:  

 
[ n*(λn)init - 0.5 ;  n*(λn)init + 0.5]   

 
With: (λn)init = sqr{ (3/2) [ sqr (1+4Bi/3) – 1] 

 
In this version we’ve used FROOT instead, also included in the SandMath - which was 
already required for the Bessel functions, so no new dependencies are added. The estimation 
for the initial guesses becomes very important for the successful root identification, and the 
execution time – which is going to be very long regardless, better crank up your turbo 
emulator for this one! 
 
Another important remark is that repeating the calculations for different values of (t, r) 
(analysis time and distance to the cylinder axis) has been expedited dramatically for 
subsequent times (i.e. longer than a previous execution). In that case there’s no need to find 
additional λn roots beyond those already identified, as the contribution of the series terms to 
the infinite sum will be smaller due to the larger argument in the inverse exponential 
function: 

f(n, r) . exp[-α.t.(λn/R)^2 ]} 
 
This of course is not so straight-forward as one may think, because the series is alternating 
the sign of its terms so the contributions are not always in the same direction. The program 
stores the successive roots found in an X-memory file, to be reused when the analysis is 
repeated with longer values of cooling time. 
 
The program listing is given below. Note that the ALPHA registers are used by the infinite 
sum routine to calculate the partials and to store the current term. Because the MCODE 
function JBS also uses the ALPHA registers for scratch, we’ll use the function A<>RG to 
preserve ALPHA in {R17-R20} while the general term is being calculated. 
 
XROM “?” is a simple data-entry utility functions to save bytes. 
 

1 LBL "?" 
2 RCL IND X 
3 "|=" 
4 ARCL X 
5 "|-?" 

6 CF 22 
7 PROMPT 
8 FS?C 22 
9 STO IND X 
10 END

 
Be careful if you use arithmetic functions with the value in X – that would alter the expected 
stack configuration and may be disruptive to the program. 



ETSII Engineering Collection                                                                                                  HP-41 Programs 

(c) Ángel M. Martin Page 22 of  107  December 2016 
 



ETSII Engineering Collection                                                                                                  HP-41 Programs 

(c) Ángel M. Martin Page 23 of  107  December 2016 
 

Stationary Heat flow through Fins. [ ANULAR, TRIANG, TRAPEZ ] 
From the author’s Engineering Collection, included in the ETSII4 module. 

 
 

Annular Fins, with thickness w and r1, r2 the 
internal & external radius respectively. 
 
Let n = sqrt( 2h / Kw ),  
 
with h the heat transfer (film) coefficient and K 
the thermal conductivity. 
 
Let T0 be the temperature difference between the 
base (r = r1) and the surrounding cooling fluid. 
 
Assuming there’s no heat transfer at the fin’s tip, the expression for the temperature at a 
distance r, (r1<= r <= r2) is given below: 
 

T(r)/T0 = [ I0(n r). K1(n r2) + K0(n r). I1(n r2)] / [ I0(n r1). K1(n r2) + I1(n r2). K0(n r1)] 
 
where I, K are the modified Bessel functions of first and second kind. 
 
The expression for the dissipated heat is in this case: 
 
Q = 2π nKw r1 T0 [ I1(n r2). K1(n r1) - K1(n r2). I1(n r1)] / [ I0(n r1). K1(n r2) – K0(n r1). I1(n r2)] 
 
 

 
 
Straight Fins with trapezoidal or triangular section profiles, with base thickness w and 
distance “d” to its (fictitious) triangular end point. Taking that end point as origin of 
coordinates, let xe be distance to the end of the fin, and the base xb = d 
 

• For a trapezoidal fin the actual length is:  L = (d -Xe). 
• For a triangular fin Xe =0 ; and its length is L = d 

 
 
Let f = sqrt[ 1 + (w/2d)2 );  and:  p = 2 sqrt( 2f .h .d / K.w) 
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Let T0 be the temperature difference between the base and the surrounding fluid (air). 
 
The expression for the corrected temperature (or difference) T(x) at a distance x >= xe is 
given below, denoting x* = sqrt(x) 
 
Τ(x)/T0= [ I0(p.x*).K1(p.xe*) + I1(p.xe*).K0(p.x*)] / [ I0(p.d*).K1(p.xe*)+ I1(p.xe*).K0(p.d*)] 
 
Assuming there’s no heat transfer at the fin’s tip, the expression for the dissipated heat (per 
unit of depth) is in this case: 
 
Q= -(A)[ I1(p.d*).K1(p.xe*) - I1(p.xe*).K1(p.d*)] / [ I0(p.d*).K1(p.xe*)+ I1(p.xe*).K0(p.d*)] 
 
with A = K.w.p (Tb-T0) / sqrt(d) 
 
Note: if you prefer using the base as origin of coordinates, simply replace x by (d – x) in the 
above expressions. 
 
These programs use the Modified Bessel functions from the SandMath module, which needs 
to be plugged in the calculator as well. 
 
 
Examples. 
 
Calculate the temperature at the edge and the total dissipated heat for the following 
conditions: surrounding temperature Tinf = 30 deg C, base temperature Tb = 200 deg C. 
Physical properties: h = 34.89 [W/K.m^2] ;   K = 53.498 [W/K.m]  
 

a) an annular fin with r1=8 cm, r2=14 cm; w= 1 cm  
b) a trapezoidal fin with w= 1cm, d = 14 cm; xe = 4 cm  
c) a triangular fin with w= 1cm; d = 14 cm  

 
 
The results for the corrected temperature (T(x)-Tinf) are given in the table below: 
 

Fin type Tc (deg C) Q [J/s] 
Annular, r = 0.14 m 131.1090 409.3259 
Trapezoidal (x=4 cm) 81.5435 799.7711 
Triangular    (x=0) 29.6077 855.8098 
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Natural Convection Nusselt numbers.  [ NATCNV ] 
From the author’s Engineering Collection, included in the ETSII4 module  
 
 
This program calculates the Nusselt dimensionless number and 
the film coefficient (h) in a natural convection situation for the 
following three cases: 

• Vertical plate or cylinder 
• Horizontal plate 
• Horizontal Cylinder or Sphere. 

 
The program requires the Grashof (Gr) and Prandtl (Pr) numbers 
- or each of their constituent factors when they’re not known to 
obtain the needed values.  Then its product (i.e. the Raileigh 
number Ra) is used as a criteria for the different sections of the 
boundary layer conditions, as follows: 
 

Gr = [ g β L^3 (Tp - Tinf) ] / ν^2    
Pr = µ Cp / Kf 
Ra = Gr * Pr 

 

 
Case 1:  LowLimit < Ra < 1 E4   

Where the low limit being 0.1 for vertical plates/Cylinders, or 1 E-5 for horizontal 
Cylinder/Sphere. Here a fourth-degree polynomial approximation is used as follows: 
 
1.a. Vertical Plate / Cylinder: 
Nu = 0.161771563 + 0.127972027 Ra + 1.153845962 E-2 Ra^2 - 2.797201424 E-3 Ra^3 + 4.662002506 E-4 
 
1.b. Horizontal Cylinder / Sphere: 
Nu = 5.949883478 E-2 + 01274378392 Ra + 9.986887925 E-3 Ra^2 + 2.865190955 E-4 Ra^3 +  
         + 2.185315948 E-5Ra^4   
 

  
Case 2:  1 E4 < Ra < 1 E9 

Vertical Plate/Cylinder:  Nu = 0.59 / Ra^4 
Horizontal Cylinder / Sphere:  Nu = 0.525 / Ra^4 
 

  
Case 3:  1 E9 < Ra < 1 E12 

For all cases covered in the program:  Nu = 0.129 / Ra^3 
 
Finally the film coefficient is calculated using the definition expression as function of the 
thermal conductivity (K) and the characteristic dimension (length or diameter) of the body: 
 

 h = Nu K / L 
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Radiative View Factors.  [ FDD, FRR ] 
From the author’s Engineering Collection, included in the ETSII4 module  
 
 
This program obtains the view factors used in radiative 
calculations. The driver programs prompt for the geometrical 
dimensions of the shapes (radius, base, height, and separation 
distances) returning the solution after a short calculation time. 
 
The formulas used are as follows: 
 

1. From a disc of radius R1 to a coaxial parallel disc of radius 
R2 at separation H, with r1=R1/H and r2=R2/H.    

 
   

2. Between parallel equal rectangular plates of size W1·W2 separated a distance H, with 
x=W1/H and y=W2/H.    

 
 
Examples. 
 
Calculate the view factors between two parallel coaxial disks of radius R1 = 2.25, and R2 = 
1.75 separated a distance d = 3. Do the same for two equal rectangular plates of dimensions 
2.25 x 1.75 separated the same distance. 
 
The results are shown below: 
 
Coaxial Discs,  F12 = 0.1894  
Rectangular plates F12 = 0.1088  
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Moments of Inertia.  [ MOI, MOI+ ] 
From Jean-Marc Baillard’s web site 
 
 
This program  calculates the moments of inertia of a system of 
n points  Mk ( xk , yk , zk )  with  masses  mk  respectively  
 

Ix = Σ  mk ( yk2 + zk2 ) 
Iy = Σ  mk ( xk2 + zk2 )            
 Iz = Σ  mk ( xk2 + yk2 ) 

and: 
Io = Σ  mk ( xk2 + yk2 + zk2 ) = ( Ix + Iy + Iz ) / 2 

 
 
The Driver program MOI+ will first prompt for the number of points, “n”; followed by 
sequential prompts for the point coordinates and the masses values (entered in the stack 
separated by ENTER^), storing them in a contiguous set of data registers starting at R01. The 
data entry process completes with the control word 1,00(4n) in X and the execution s 
transferred to the main routine MOI. 
 

        , and:   
 
In manual mode (or subroutines) the data is expected in the data registers, and the control 
works bbb.eee in X. On completion the results are left in the stack, arranged as follows: 
 

  STACK         INPUTS       OUTPUTS 
           T              /             Io 
           Z              /             Iz 
           Y              /             Iy 
           X        bbb.eee             Ix 

 
 
Example. 
 
With the 5 points:     xk      1     -4       2      -3       5 

    yk      2      7      -8      -1       3 
    zk      3      1      -2      -4      -7 
    mk      7      8       4       5       2 

 
 Store, for instance, these 20 numbers into R01 thru R20 (in column order) 
 
Then    1.020   XEQ "MOI"  >>>>    Ix =  964                    ---Execution time = 6s--- 
                                              RDN     Iy =  511 
                                              RDN     Iz =  945 
                                              RDN     I0 =  1210 
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Gas Liquefaction Cycles.  [ LINDE, CLAUDE, HEYLND ] 
From the author’s Engineering Collection, included in the ETSII3 module  
 
 
This program calculates the enthalpy  at all the significant stages of the most common  
liquefaction cycles: Linde, Heylandt or Claude.  Program prompts for some input data such as 
the enthalpy of the saturated liquid and vapor and the entry conditions of the gas. 
Additionally, the turbine isentropic efficiency is also required for the Heylandt and Claude 
cases. The program also calculates the liquefied fraction per circulating mol of gas. 
 
The enthalpies at the points of known conditions must be obtained using the tables 
corresponding to the gas used in the cycle. The compressors used in the cycle are assumed to 
be isothermal = ar at least that the final temperature is the same as the initial if an association 
of several compressors in series is used. 
 

 
Linde Cycle. 

 
 
 
 
 
 
 
 
 
 
 
 
 

  The equations used are as follows:     
    
    y = (h2 – h1) / (h5 –h1) 

         h4 = y.h5 + (1-y). h6 
 
 
 
Example: 
 
Calculate the liquid fraction extracted per mol in a Linde cycle with the following input 
conditions {h1, h2, h5, h6}.= The results are also given in the table. 
 

H1 419.600 Results: 
H2 380.600 H3 183.5878 
H5 0.000 H4 183.5878 
H6 202.400 y 0.0929 
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Claude and Heylandt Cycles. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The equations used are as follows: 
 

x. h4 = y.h7 + (x-y). h9”  
x. h6 = y. h7 + (x-y). h8 

     (1-y).h10 = h3 + h1 (1-y) – h2 
 

And liquid fraction extracted per mol:       y .(h1 – h7) = (h1-h2) + (1-x).h3 – (1-x).h9” 
 
 
Examples: 
 
Calculate the liquid fraction extracted per mol in a Claude cycle with the following input 
conditions {h1, h2, h5, h6}. The fraction thru the turbine is (1-a) = 0.55; and the isentropic 
efficiency of the turbine is r = 0.7. The results are also given in the table. 
 

Input Data Results: 
h1 423.9000 y 0.2971 
h2 384.9000 h3 77.0744 
h6 0.0000 h4 67.9579 
h7 200.000 h5 67.9579 
h8 174.140 h8” 226.8300 

 
More examples are shown in the next page – taken from a printout using the thermal printer. 
They include a sketch with the cycle components and (more importantly) the numbered 
points within the cycle with the convention used in the data entry prompts. The components 
are labeled in Spanish – a good opportunity to dust off your language skills ;-) 
 
Campana Saturación = Vapor Dome;  Intercambiador = Heat Exchanger 
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Ideal processes of Perfect Gases with Cp=Cp(T). [ T2, P2, DS ] 
From the author’s Engineering Collection, included in the ETSII3 module  
 
 
For a perfect gas which specific heat at constant pressure (Cp) is 
a polynomial expression in the temperature (of any degree) -  
this program calculates the unknown T2, P2, ∆S final value after 
experiencing an ideal process of temperature change. The initial 
state is to be known, with {T1, P1} always known, and also 
either {T2, P2}, or {P2, ∆S}, or {T2, ∆S} depending on the 
case. 
 
Let Cp = Σ (Ak Tk ) ;  in [Cal/Mol.K]  ; with k = 1, 2,.. n.  
 
The main expression used is the following: 
 

∆S = Ao Ln(T2 / T1) + – R. Ln(P2 / P1) + Σ (Ak/k) [T2
k – T1

k ] ; k= 1,2.. n 
 
Whereby the final pressure is directly obtained as well; and the final temperature requires an 
iterative process using a root-finding algorithm (routine “SLV” within the Module). 
 

P2  = P1. exp { (1/R) [ Ao Ln(T2 / T1) – ∆S +  Σ (Ak/k) [T2
k – T1

k ] ;   k= 1,2.. n 
 

 
Examples. 
 
Characterize the complete final state of a perfect gas under ideal processes from T1= 300deg 
and P1= 1 atm, with partial final data known shown in the table below; if its Cp is given by 
the polynomial expressions:  
 

a) Cp = 5.183 + 0,028 T – 0.000054 T^2  [Cal/mol.K] 
 

Case T2 (deg) P2 (atm) DS ( Cal/Mol.K ) 
XEQ “DS” 654.03 deg 50.00 DS = 5.2788 
XERQ “P2” 654.03 deg P2 = 50.0158  5.2788 
XEQ “T2” T2 = 654.0071  50.00 5.2788 

 
 

b) Cp = 5  [Cal/mol.K] 
 

Case T2 (deg) P2 (atm) DS ( Cal/Mol.K ) 
XEQ “DS” 654.03 deg 0.0954 DS = 8.5603 
XERQ “P2” 654.03 deg P2 = 0.0954  8.56 
XEQ “T2” T2 = 654.0578  0.0954 8.56 

 
 
Note; This program uses the “Unit Management System“, make sure you have the Unit 
Conversion module plugged into the calculator as well. 
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Non-isentropic expansion into Vapor Dome. [ ENIVH ] 
From the author’s Engineering Collection, included in the ETSII3 module  
 
 
This short program calculates the final enthalpy in a no-
isentropic expansion of a gas with final conditions inside of 
the vapor dome, like it’s the case of steam turbines in power 
plants.  
 
Obviously the isentropic efficiency of the turbine will be 
needed. Other required input data include the initial {P,T} 
conditions, as well as one of these two in the final stage.  
With these we’ll obtain the enthalpy and entropy using the 
substance charts, which will be used by the program. 
 
The results include the vapor quality at the exit of the 
turbine, as well as the corresponding enthalpy if the expansion was isentropic. 
 
Let x the fraction of vapor in the final condition, 2l and 2v the points corresponding to the 
liquid and vapor ends of the vapor dome at the T2 temperature. 
 
The formulas used are as follows: 
  
 x = (S1 – S2,liq) / (S2,vap – S2,liq) 
 

H2 =  x H2,vap + (1-x)  H2,liq 
 

H2” = H1 + ηT { H2,liq + H1 + [ (S1 – S2,liq) / .∆S2,vap ]. ∆Η2,vap } 
 

 
 
Example: 
 
Calculate the final enthalpy in a non-isentropic expansion of a gas from initial conditions 
H1= 3,240 kJ/kg;  S1= 6.939 kJ/kg.K into a final condition given by H2,v = 220.6867 kJ/kg; 
H2.liq = 2.307.5094kJ/kg ; entropy of S2,vap =  7.25 kJ/kg.K; S2,liq = 3.7564. Use the value 
0.75 for the turbine efficiency. 
 
The results are:  x = 0.91 kg/mol;   vapor title 

H2 = 406.46 kJ.kg; and  isentropic value 
H2” = 1,114.84 kJ/kg  non-isentropic result 
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Properties of Superheated & Saturated Steam. [ by Michel Le Mero ] 
From the User’s Program Library Europe #10341, included in the ETSII3 module  
 
 
With a pair of properties being known {P,T} or {P,S}, or {P,H} – this program first 
determines  if the point is in the dry or saturated region and outputs the superheat or the 
quality of steam. Then upon pressing the corresponding user’s keys any of the unknown 
properties are calculated. The program uses British units internally but the unit conversion 
module is required – so that you can specify the input and output units with the UMS facility. 
 

 
 
Superheated region.

 

 The subroutine “PT” uses the well-known formulation of Keenan and 
Keyes to derive H, S, and V. The higher order term has been omitted from the formulas for H 
and S. The Subroutines “PH” and “PS” use the following iterative procedure to compute T: 

a) Estimation of T and Cp, the specific heat 
b) Calculation of an approximate H or S 
c) Correction of estimated T as a function of Cp and H or S. 
d) The iteration stops when the correction factor for T is less that 1 degree F. 
e) All properties are then derived from the final P and T. 

 
Equations and variables: with P expressed in absolute atm, and T in degrees Kelvin 
 

V = 0.0160185 (4.55504 T/P + B) 
H = F + 0.043557 (F0.P + B’(-B6 + B0(B2 - B3 + 2B7.B’))) 
S = 0.809691 log(T) – 0.253801 log(P) + a1.T – b1/T - 0.355579 – 0.0241983 β  

 
where: 
 B = B0( 1 +(B0.P/T^2)(B2-B3+(B0.P/T^2)(B4-B5)B0.P)) 
 B‘ = (1/2) B0(P/T)^2   B4 = 0.21828.T 
 B0 = 1.89 - B1;   B1 = (2641.62 / T). 10^(80870/T^2) 
 B2 = 82.546;    B3 = 162460 /T;  
 B5 = 126970 / T ;   B6 = b0.B3 – 2.F0(B2-B3); 
 B7 = 2F0(B4 –B5) - B0.B5;  F0 = 1.89 –B1(2 + 372420 T^2) 

a1 = 1.8052 E-3 ;   b1 = 11.4276  
F = 775.596 + 0.63296 T + 1.62467E-3 T + 47.3635 log(T) 
β = (1/T)((B0-F0).P + B’(B6 + B’.B0(B0(B4-B5)-2B7)))  

 
In the superheated region the program will yield accurate results for S >= 1.4 BTU/lb.F 
 
 
Saturated Region

can then be calculated using Q. In the example below S = Q.Sg + (1-Q).Sf 

. The gas properties Hg, Sg and Vg are computed using “PT”, with P and T 
the saturation temperature, Tsat. The fluid properties Hf, Sf, and Vf are calculated as high 
order polynomial regressions of P. Knowing P and either H or S the steam quality is easily 
computed – for instance with H being known: Q – (H-Hf)/(Hg-Hf). The remaining properties 

 



ETSII Engineering Collection                                                                                                  HP-41 Programs 

(c) Ángel M. Martin Page 37 of  107  December 2016 
 

Polynomial regressions: Let p = log(P) 
 
In the saturated region, polynomial regressions have been made for 1024 psi >= P >= 1 psi 
 

Tsat =  Σ {tk.p^k}; k=0.1..4  -     Sf = Σ{sk.p^k};  k = 0,1..6    
Hf = Σ{hk.p^k}; k=0,1..5      -     Vf = Σ{vk/p^k}; k= 0,1..4 

 
With coefficients as follows: 

K tk sk hk vk 
0 101.6904213 0.1325214898 69.8248945 1.612664461 E-2 
1 22.99931254 0.04112950801 23.38590621 5.504415112 E-6 
2 1.307138044 1,332706491 E-3 0.5953773184 7.900287375 E-5 
3 -0.01038755447 1,055114953 E-4 0.2785143 -1.486233751 E-5 
4 9.537213359 E-3 4.068809803 E-5 -0.03427505869 1.236908782 E-6 
5  -4.357212264 E-6 2.468448779 E-3  
6  2.038138825 E-7   

 
All constants will be automatically loaded by the program the first time they’re required for 
the calculations. 
 
 
Example.   
 
A steam turbine operates at the following conditions; Inlet: 650 psi, 790 deg F; exhaust: 2psi. 
Determine the inlet enthalpy and specific volume. Assuming a 10% pressure drop in the inlet 
valves, what is the available energy?   
 
Executing “PT” with P = 650 psi and T = 790 F 

WAIT...  “SELECT KEY:”  ... “P T  H S  V”  
XEQ “C” => “UNITS H?”, “BTU/LBM”  

=>   “H=1,349,5 BTU/LBM” 
 

R/S  => “SELECT KEY:”  ... “P T  H S  V” 
XEQ “E” => “UNITS V?”,  “FT3/LBM” 
R/S  =>   “V=1,08 FT3/LBM” 

 
Executing “PH” now with P = 0.9*650 = 580, and the same temperature: 

WAIT...  “SELECT KEY:”  ... “P T  H S  V”  
XEQ “D” => “UNITS S?”, “BTU/LBM*K” 
R/S  => “S=1.620 BTU/LBM*F” 

 
With that value of the entropy known, and the exhaust pressure P = 2 we can execute “PS” to 
obtain the exhaust enthalpy: 

 WAIT...  “SELECT KEY:”  ... “P T  H S  V”  
XEQ “C” => “UNITS H?”, “BTU/LBM”  

=>   “H=946.8 BTU/LBM” 
 
Finally, the available energy is the difference between the inlet and exhaust enthalpy: 

U = Hout – Hin = 1,349.5 -  946.8 = 402,72 BTU/lb 
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Example (con’t). 
 
Suppose the turbine having 80% efficiency. What are the exhaust quality, specific volume and 
temperature? 
 
Result:  the exhaust available energy is now reduced to the 80% of the value obtained before, 
i.e.: U’= 0.8, U = 322.176 BTU/lb 
 
Subtracting it from the exhaust enthalpy obtained previously: 
H2’= 1,349,5 – 322.176 = 1.027,324 BTU/lbm 
 
Which can be used as input data for another iteration of “PH”, using again P2= 2 psi: 
 

WAIT...   “Q = 0.927” 
“SELECT KEY:”  ... “P T  H S  V”  

 XEQ “E”   “UNITS H?” 
 R/S    “V = 161,07 FT3/L“ 
 XEQ “B“   “T=126,00 F“ 
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Principle of Corresponding States. [MARTIN] 
From the author’s Engineering Collection, included in the ETSII3 module  
 
 
This program evaluates the third of the {P,V,T} properties in the vapor-liquid region of a 
non-perfect gas when the other two are known. It uses the Principle of Corresponding States 
(PCS) with a modification of the equation of state proposed by Joseph Martin, expressed in 
reduced form and cubic in the volume; and given by the expression: 
 

Pr = Tr / [Zc.Vr – B ] – A / { Trn [ Zc.Vr – B + 1/8 ]2 } 
 
The Critical constants {Tc, Pc, Vc} are widely available in the technical reference data banks. 
Zc is the experimental compressibility factor, typically smaller than the theoretical one (Zt = 
Pc.Vc/R.Tc). The constants {A, B, n} are non-dimensional (“n” is not the number of moles) 
and specific to each substance. They are obtained using semi-empirical methods, which 
description is beyond the scope of this manual. Approximate values for A, B can be taken as 
A = 27/64, and:  B = 0.72.Zc – 0.152 
 
The table below shows the values for a few gases that you can use to check the program. 
 R-40 R-50 R-170 R-290 R-764 R-744 
Parameter CH3Cl CH4 C2H6 C3H8 SO2 CO2 
Zc 0.268 0.291 0.27844 0.2701 0.268 0.274 
A 0.421875 0.421875 0.421875 0.421875 0.421875 0.421875 
B 0.0495 0.0575 0.05739 0.0511 0.051 0.0453 
n 0.85 0.75 0.45 0.40 0.50 0.50 
Tc (C) 143.1 -82.3 32.0908 96.85 157.19 30.978 
Pc (kp/cm2) 68.0997 97.6104 50.3 43.4 80.2996 75.2245 
Vc (cm3/g) 2.7027 6.200 4.7619 4.4248 1.9084 2.1359 
PM (g/mol) 50.491 16.044 30.07 44.09 64.06 44.01 
w (acentric factor) 0.156 0.011 0.105 0.152 0.2510 0.228 

 
The programs work internally with the units reflected in the table but you can input and 
output the values in any other units. It comes without saying that these programs make 
extensive use of the Unit Management System (UMS), therefore the unit Conversion Module 
needs to be plugged into the calculator. 
 
This program provides a subset of the functionality of the Thermodynamic Properties of 
Refrigerants, to be described in the next section. Here the three magnitudes are treated in an 
interchangeable solutions form – so you can enter with any two of them known to obtain the 
third. 
 

     , and:  
 

• The specific volume is the largest (real) root of the cubic equation in V, obtained by 
the auxiliary routine “ROOT3”, included in the module. 

• Calculation of the temperature requires the root-finding routine “SLV”, also included 
in the module (no additional dependencies). 
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Examples. 
 
Calculate the specific volume of CO2 in the saturated region knowing its Martin constants 
and critical value as per the table above. The initial conditions point data are T = 0 deg C, 
and P = 35.4861 kp/cm2. Check the result obtained using it as data point for a reversed 
calculation of P (with same T) and T (with same P). 
 
Result: Ve = 0.0105 m3/kg 
 
Feeding this result as initial input: 
 

P (Ve; 125 C) = 35,4861 kp/kg 
T (Ve; 50.9825 kp/cm2) = 2,0000E-7 deg C 
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Thermodynamic Properties of Refrigerants. [ FREON, R12, R22, NH3] 
From the author’s Engineering Collection, included in the ETSII3 module  
 
 
These programs provide a replacement for the different refrigerant chart sheets – using a 
semi-empirical approach that combines the Martin Equation of State, the Antoine’s Equation,  
and polynomial expressions for the specific heat at constant pressure of the liquid and the gas 
(in the vapor dome) - all valid within the application ranges. 
 
The Martin Equation of State uses reduced magnitudes, and it’s cubic in the Volume: 
 

Pr = Tr / [Zc.Vr – B ] – A / { Trn [ Zc.Vr – B + 1/8 ]2 } 
 
The data entry process involves all the parameters required, as obtained by the semi-empirical 
method used. The table below lists the parameters for the main refrigerant gases. Note that 
the parameters A, B, and N are non-dimensional (“n” is not the number of moles). However 
all coefficients for the specific heats have dimensions - as required by the inversed 
polynomial expression: Cp = Σ ak/T^k ; with Cp [Heat/Mass*Temperature] 
 
The programs work internally with the units reflected in the table but you can input and 
output the values in any other units. It comes without saying that these programs make 
extensive use of the Unit Management System (UMS), therefore the unit Conversion Module 
needs to be plugged into the calculator. 
 
 R-11 R-12 R-13 R-22 R-113 R-717  
Parameter CFCl3 CF2Cl2 CF3Cl CHClF2 CCl2FCClF2 NH3  
Zc 0.2766 0.2790 0.27739 0.267 0.2560 0.242004  
A 0.421875 0.421875 0.421875 0.421875 0.421875 0.421875  
B 0.05598 0.0578 0.0566 0.0488 0,0323 0.03  
n -1.1 0.900 0.60 1.00 0.75 -1.1  
Tc (C) 197.99 112.00 28,7708 96.00 214.09 132.2808  
Pc (kp/cm2) 44.6003 41.9613 39.460 50.300 34.80 115.0036  
Vc (cm3/g) 1.8018 1.79168 1.7212 1.9041 1.7301 4.247  
PM (g/mol) 137.38 120.90 104.47 86.50 187.39 17.032  
w  0.188 0.1760 0.180 0.215 0.252 0.253  
Ln(Pv) = x1 – x2/T  ; with T in K and Pv in kp/cm2 
x1 10.84436 10.1760 9.96485 10.6316 11.13964 11.71516  
x2 3209.743 2469.5656 1901.3441 2460.1029 3568.1032 2803.591  
Cp,v = Σ {ak / T^k} ; k= 0,1,..4  ; with T in K and Cp in kcal/kg.K 
a0,v (kcal/kg.K) 0.1886 0.25659 0.30905 0.3485 0.25732 0.95239  
a1,v -8.0924 -49.1350 -70.3763 -102.14 -15.946 -2.92521E2  
a2,v -3.8118E3 5405.60 1.0052E4 1.6546E4 -1.6728E4 6.2791E4  
a3,v 4.7327E5 -239860.0 -5.6219E5 -1.003E6 4.9196E6 -4.725E6  
a4,v 0.0000 0.0000 0.0000 0.0000 -4.1739E8 0.0000  
Cp,l = Σ {ak / T^k} ; k= 0,1,..4 
a0,l 0.56642 9.9361 11.190 14.4110 4.5917 0.24694  
a1,l -2.3715E2 -9.445E3 -8.4336E3 -1.3625E4 -5.058E3 -2.3079E4  
a2,l 5.2605E4 3.4338E6 2.4332E6 4.9211E6 2.2046E6 8.4508E6  
a3,l -4.0107E6 -5.5272E8 -3.1189E8 -7.8839E8 -4.2602E8 -1.3705E9  
a4,l 0.0000 3.3182E10 1.4964E10 4.7189E10 3.0626E10 8.2854E10  
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Equations and memory register map:- 
 
Let Pr = P/Pc, Tr = T/Tc, and Vr = V/Vc the reduced pressure, temperature and volume over 
the corresponding critical values.  Let To = 273 K, and Po = Pv(273). 
 

 
The pressure is directly calculated as: 

Pr = Tr / [Zc.Vr – B ] – A / { Trn [ Zc.Vr – B + 1/8 ]2 } 
 
The specific volume
 

 is obtained as root of the third degree equation given by: 

a3.V^3 + a2.V^2 + a1.V + a0 = 0; where the coefficients are defined as: 
 

a0 = A.B + (1/8 - B)2 [ (Tr)n+1 + B.Pr.(Tr)n ] 
a1 = (Zc/Vc). { A + Pr.(Tr)n  [3B2 - B/2 + 1/64] - (1/8 - B)*2(Tr)n+1 } 
a2 = (Zc/Vc)2 . [ (Tr)n  Pr.(1/4 - 3B) - (Tr)n+1 ]  

a3 = (Zc/Vc)3 Pr (Tr)n   
 
The density of the saturated liquid
 

 is calculated by the formula: 

Vs,l = Vsc. Vg (1-w.Γ) ; with the following auxiliary definitions: 
 

Vsc = (R.Tc/PM.Pc).(0.292 – 0.0967 w) 
Γ  = 0.29607 – 0.09045 Tr – 0.048442 Tr^2 

 
And Vg depends on the actual value of Tr, as follows: 

 
a)  if:  Tr < 0.2 or Tr > 1  =>  not in liquid phase 

 
b)  if:  0.2 <= Tr < 0.8   
Vg = 0.33593(1-Tr) + 1.51941 Tr^2 – 2.02512 Tr4^3 + 1.11422 Tr^4 

 
c)  if:  0.8 <= Tr <= 1   
Vg = 1 + 1.3 sqrt(1-Tr).log(1-Tr) – 0.50879(1-Tr) – 0.91534(1-Tr)^2   

 
 
Enthalpy of Vapor:
Where ∆ indicates discrepancy from the perfect gas, denoted itself as “o” 

  Defined as: H(T,P) = Ho(T) + [∆oH(T,P) - ∆oH(To,Po)] 

 
Ho(T) =  Hvo(To) + ITG[Cpv. dT ]; between {To and T} ;   
∆Ho(T,P)= [∆Fo(T,P) + Q(T,P) + T.∆So(T,P)]  
 
hence, using an origin reference of 100 Cal/kg  at 0 oC (a.k.a the “dead state”): 
H(T,P) =  {100 + Hvo(To) } + [(∆F + Q - T.∆S) – (∆Fo + Qo - To.∆So)] + ICpv 
 
with: Qo = Po.Vo – R.To/PM ;  and:    Q = P.V – R.T /PM 

 
The integral of the specific heat is easily obtained by direct integration: 

 
ITG[Cpv] =  ao(T-To) + a1.Ln(T/To) - a2(1/T - 1/To) - a3(1/T2 - 1/To2) /2  

       - a4(1/T3 - 1/To3) /3 
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Entropy of Vapor:
 

  Defined as: S(T,P) = So(T,Pv) + [∆oS(T,P) - ∆oS(To,Po)] ;  

Let To = 273 oK, and Po = Pv(273) = exp(x1+x2/To) 
 

So(T,P) = So(To,Po) – R.Ln(P/Po) + ITG [ (Cpv/T).dT ]; between {273 and T}  
 
hence, using an origin reference of 1 Cal/kg.K  at 0 oC (a.k.a the “dead state”): 
S(T,P) =  {1 + Hvo(To) /To} – (R/PM). Ln(P/Po) + [∆οS - ∆οSo] + ICPV

T  
 

The integral of the specific heat over the temperature

 

 is easily obtained by direct 
integration of the inversed-polynomial expression: 

ITG[Cpv/T] =   a0.Ln(T/To) - a1(1/T - 1/To) - a2(1/T2 - 1/To2) / 2 –   
       - a3(1/T3 - 1/To3) /3 – a4(1/T4 - 1/To4) / 4 
 
The vaporization enthalpy is obtained using the Pitzer correlation shown below (per kg), 
where w is the acentric factor of the substance: 
 

Hvo(To) = R.(Tc/PM) {10.95w.[(1-To/Tc)^0.456] + 7.08*(1-To/Tc)^0.354 }   
 
The discrepancy of Entropy and Free Energy (defined as F = U – T.S) are calculated with the 
expressions shown below: 
 

∆Fo(T,P) =   (R.T/PM).Ln(PM.Zo) + Pc.Vc {A / [Zc.Tr^n.(Zc.Vr + 1/8 - B)^2] –  
-  Tr.[Ln(Vr) / PM.Zco - Ln(Vr-B/Zc)/Zc] } 

 
∆So(T,P) =   (R/PM) { (n+1) + n.A.(PM.Zco/Zc) / [Zc.Vr + 1/8 - B].Tr^(n+1) -           
   +     Ln(PM.Zo) +  Ln[Vr / (Vr - B/Zc)^(PM.Zco/Zc)] } 

 
with:     Zo = P.V/R.T ; and:   Zoc = Pc.Vc/R.Tc  

 
Finally, the registers map is shown below.1 

 
R00 pointer 
R01 units-1 
R02 units-2 
R03 Zc 
R04 A 
R05 B 
R06 n 
R07 Tc 
R08 Pc 
R09 Vc 
R10 work V  
R11 work P 
R12 work T 
R13 PM 
R14 scratch 
R15 scratch 
R16 scratch 
R17 T(Pv)] 

R18 w (acentric fac.) 
R19 x1 Antoine 
R20 x2 Antoine 
R21 Cp(0)-V 
R22 Cp(1)-V 
R23 Cp(2)-V 
R24 Cp(3)-V 
R25 Cp(4)-V 
R26 Cp(0)-L 
R27 Cp(1)-L 
R28 Cp(2)-L 
R29 Cp(3)-L 
R30 Cp(4)-L 
R31 Po  
R32 Vo 
R33 V 
R34 IHVo 
R35 IHV 

R36 ∆So 
R37 ∆S 
R38 ∆Fo 
R39 ∆F 
R40 T 
R41 P 
R42 ICPV or ICPL 
R43 ICPVT or ICPLT 
R44 ∆Fo+Qo+To.∆So 
R45 ∆F+Q+T.∆S 
 

R46 100+IHVo+ 
ICPV+[∆F+Q+T.∆S] -  
[∆Fo+Qo+To.∆So] 
 

R47 1+IHVo/To-
DSo+ICPVTo+DS}-
R/PM.Ln(P/Po) 
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Example1. 
 
Calculate the Freon-12 properties for the following (P,T) conditions: 
 
T1 = -25 deg C, and P1 = 1.2616 kp/cm2;  
T2 = 25 C,  P2 = 0.2 atm; and  
T3 = 0 C,    P3 = 4.3135 kp.cm2 
 
The program execution is shown below. Note that each case represents a point in different 
areas of the diagram: saturated vapor (dome), Vapor, and Liquid. The results in the vapor 
dome include both the saturated vapor and liquid phases. 
 
Note. You can type ”R12” at the initial prompt  to get all constants loaded automatically. 
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Example2. 
 
Calculate the Freon-22 properties for the following (P,T) conditions: 
 
T = -40 deg C, and P1 = 1.0760 kp/cm2, P2 = 0.5 atm, and P3 = 2 atm 
 
The program execution is shown below. Note that each case represents a point in different 
areas of the diagram: saturated vapor (dome), Vapor, and Liquid. The results in the vapor 
dome include both the saturated vapor and liquid phases. 
 
Note. You can type ”R22” at the initial prompt  to get all constants loaded automatically. 
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Psychrometric Properties of humid Air. [ by Alfredo Quijano ] 
From the User’s Program Library Europe, included in the ETSII3 module 
 
 
This program calculates the psychrometric properties of the air, replacing the use of the 
substance charts with faster and more accurate results. The input data can be one of the 
following three options:  

a) Dry-bulb temperature (Ts) and relative humidity (f) 
b) Dry-bulb temperature (Ts) and specific humidity (w) 
c) Dry-bulb (Ts) and wet-bulb (Th) temperatures. 

 
The equations used are as follows: 
 

Vapor pressure (Pa):   Pv = Φ Pvs, with Φ the relative humidity  
Saturated vapor pressure (Pa):  log Pvs = [2.7858 + 7.5.Ts/(239.3 + Ts)] 
 
Specific humidity (per-unit):  w =0.622.Pv /(101300 – Pv) 
Dew point temperature (C):  Tr = 237.3.k / (7.5 – k), with: 

    k (237.3 + Ts) = 7.5.Ts + (237.3 + Ts).log(Φ) 
 

Specific enthalpy (kCal/Kg dry): H = 0.24.Ts + W.(0.44.Ts + 597) 
Specific Volume (m3/kg dry air): Ve = 462(Ts + 237.15) (0.622 + w) /101300 
 
Wet-bulb temperature (C):  Th = Ts – 597.(wsh – w) / (0.44w + 0.24) ; with: 
Wsh: w for saturated air  wsh = 0.622.Psh / (101300 - Psh) ; and: 
Psh: Pv saturated air at Th  log(Psh) = 2.7858 + 7.5.Th /(237.3 + Th) 
 
With specific humidity known (w), the relative humidity is given by the expression: 
 f = 101300.w / Pvs(0.622 + w) 
 

 With wet-bulb temp known (Th) the specific humidity is obtained with the formula: 
w = [597.wsh + 0.24(Th - Ts)] / [597 – 0.44 (Th –Ts)] 
 

 
Examples. 
 
Calculate the unknown factors for the three cases shown below.  
 

a) Ts = 32 deg C and  Φ = 0.68. 
b) Ts = 35 deg C and  w = 28.89 E-3 kg/kg, 
c) Ts = 32 deg C and  Th = 30 deg C 

 
The results are summarized in the table below: 
 

Parameter Case a) Case b) Case c) 
Ts (C) 32 35 32 
Th (C) 26.95 31.79 30 
Φ 0.68 799.9 E-3 865.8 E-3 
w 20.50 E-3 28.89 E-3 26.34 E-3 
Tr (C) 25.34 31.02 29.47 
Hh(kCal/Kg) 20.21 26.09 23.78 
Ve (m^3/kg) 894.2 E-3 914.7 E-3 902.3 E-3 
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Notes on Data Entry and Output. 
 
The program will ask for the input data in a serial sequence of prompts. You must enter the value for 
Ts in all cases, and then either the known value or simply [R/S] to skip the unknowns. If no values are 
introduced (i.e. you pressed [R/S] to all prompts) then the program will show the last calculated 
results. The data output will always show all the seven result values for the case – including the 
known inputs. 
 
The calculation of the wet-bulb temperature Th is done using the root-finding routine “SLV” also 
included in the module – thus no additional dependencies are introduced. 
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Temperature-Composition for binary mixtures.  [ WILSON, VANLAAR ] 
From the author’s Engineering Collection, included in the ETSII3 module  
 
 
This program obtains tabular representation of the 
composition-boiling point temperature diagram of a 
binary mixture in non-ideal conditions (where 
Raoult’s law won’t apply), under constant pressure 
conditions.  The Antoine constants for each 
component must be known. Two models are 
available, using either the Van-Laar or the Wilson 
dissolution constants and equations. The program 
also calculates the vapor-liquid composition 
diagram. The tabulations can also be plotted as 
graphic curves on the thermal printer if available. 
 
The expressions used for the calculations are shown below. Note that in both cases the 
solution requires solving the equation for the value of the temperature “T” for each value of 
the liquid fractions (x1,x2) of both components.  
 
Let and {A1, B1, C1} and {A2, B2, C2} the Antoine constants for each component as per the 
corresponding sub-index. The main equations are written as follows: 
 

x1 exp [ Z1 ] = P – x2 exp [ Z2 ] ;  where x1 + x2 =1 
y1 = (x1/P) exp[ Z1]   ;  molar fraction of vapor,:  y1 = y1(T, x1) 
     

Let {α, β} the Van-Laar constants for the dissolution; then we have: 
 

Z1 = A1 – B1/(T+C1) + α / (1+ α.x1/β.x2)^2; and 
Z2 = A2 – B2/(T+C2) + α / (1+ α.x1/β.x2)^2 

 
Let {G12, G21} the Wilson constants for the dissolution; then we have: 

 
Z1 = A1 – B1/(T+C1) – Ln(x1+G12.x2) + x2 [(G12/(x1+G12.x2) – G21/(x2+G21.x1)] 
Z2 = A2 – B2/(T+C2) – Ln(x2+G12.x1) + x1 [(G12/(x1+G12.x2) – G21/(x2+G21.x1)] 
 

The pressure remains constant. The program assumes an atmospheric pressure of 760 mm 
Hg. This can be changed by modifying the value in program lines .151, .300, and .366  
 
 
Example. 
 
Tabulate and represent the ‘Temperature-Composition” and “vapor-liquid” diagrams for  a 
non-ideal mixture of methanol and acetone, with the following data known: 
 

Methanol Acetone Disso - Van-Laar Disso -Wilson 
A1 = 18.5875 A1 = 16.6513 α = 0.5076 G12 =1.2847 
B1 = 3,626.55 B1 = 2,940.46 β = 0.962536 G21 = 0.3661 

C1 = -34.29 C1 = -35.93  
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The results are shown in the tables below, as well as represented in the charts: 
 

 Van-Laar Wilson  Van-Laar Wilson 
x1 y1 T y1 T x1 y1 T y1 T 
.05 0,0574 329,1995 0,0514 329,3898 .55 0,4771 329,5147 0,4761 330,6398 
.10 0,1107 329,0104 0,1004 329,366 .60 0,5115 329,8039 0,5151 330,9648 
.15 0,1606 328,8766 0,1475 329,3758 .65 0,5463 330,1511 0,5548 331,3404 
.20 0,2074 328,7946 0,1927 329,4184 .7 0,5823 330,5686 0,596 331,7767 
.25 0,2515 328,7616 0,2362 329,4931 .75 0,6208 331,0765 0,6398 332,2893 
.30 0,2932 328,7754 0,2784 329,5998 .80 0,6637 331,7091 0,6876 332,982 
.35 0,3328 328,8343 0,3194 329,7387 .85 0,7143 332,5254 0,7418 333,6535 
.40 0,3707 328,9374 0,3594 329,9105 .90 0,778 333,6293 0,8063 334,6074 
.45 0,4072 329,0845 0,3987 330,1165 .95 0,8656 335,2137 0,8879 335,8748 
.50 0,4425 329,2762 0,4375 330,3585 1     
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Hydrodynamic Film lubrication.  [ MICHELL ] 
From the author’s Engineering Collection, included in the ETSII4 module  
 
 
This program calculates the required flow Q and 
outer edge thickness (h1) on a film lubrication 
inclined pad with a perpendicular load F and 
moving at a uniform speed U0. The geometric data 
required may be either the slope angle (α) or the 
thickness of the oil film at the lower end (h2).  
 
 
 
The formula for the radial force is a non-explicit equation on h1, the thickness on the higher 
end of the fluid film. This can be resolved with a root-finder routine like SLV, also included 
in the module. The expression is given below, where µ0 is the fluid viscosity: 
 

Fr = [2 µ0 U0 L / (h1-h2)] [ 2 Ln (h1/h2) – 3 (h1-h2)/(h1+h2) ] 

And the flow required: 

Q = U0 h1 h2 / (h1+h2) 

 

Examples.  

Calculate Q and h1 for a Michell pad moving at 15 m/s and bearing a perpendicular load of 
200,000 N. The geometric parameters of the pad are 0.2 m deep x 0.4 m long, and the tapper 
slop is 0.0573 deg. The fluid viscosity is µ = 0.01 N/s m^2 

The solutions are shown below: 

Geometry 

h1=99,327E-6 
h2=59,327E-6 
L=0,4000 
SLOPE<)=0,0001 
 

Work Data: 

µ=0,0100 
U0=15,0000 
F=1.000.000,000 
FR=823,0323 
Q=0,0006 
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Stokes’ First Problem.  [ P1STOKE ]  
From the author’s Engineering Collection, included in the ETSII4 module. 

 
 
This program calculates the velocity at a point 
placed at a distance Y from the bottom and an 
instant t in an unsteady viscous boundary layer 
flow. The bottom is suddenly imposed at t=0 a 
constant velocity U0 and the fluid has a 
kinematic viscosity ν. Vertical distances (y) are 
measured from the bottom (y=0) up. 
 
The expression for the instant velocity at a distance y can be related to the cumulative 
probability function of a normal distribution as follows: 
 

U(y,t) = 2 U0 [ 1- F( y / sqr(2 ν t) ) 
 

  
Example:  
 
for U0 = 1 m/s, v = 10 m^2/s;  Y = 0.5 m and t = 1 s 
 
 the result is:  U(y,t) = 0.8744 m/s 
 
The original version of this program used a polynomial approximation to calculate F, with an 
accuracy limited to 4 to 6 decimal places, depending on the value of the argument. A modern 
version based on the ERF implementation on the SandMath brings that to at least 8 decimal 
places and a much faster execution – thanks to the MCODE and the improved algorithm 
used. 
 

U(y,t) = U0 [ 1 –  erf { [ y / 2 sqr( νt) ] }  
 
Below you can see the program listing using the new approach. Note that R00-R03 are used 
by ERF: 
 
 

01 LBL “P1STOKE” 
02 “U0=?”  
03 PROMPT 
04 STO 04 
05 “NU=?” 
06 PROMPT 
07 STO 05 
08 LBL 00 
09 “Y=?” 
10 PROMPT 

11 “T=?” 
12 PROMPT 
13 RCL 05 
14 * 
15 ST+ X 
16 SQRT 
17 / 
18 ERF 
19 CHS 
20 1 

21 + 
22 RCL 04 
23 * 
24 “U=” 
25 ARCL X 
26 PROMPT 
27 GTO 00 
28 END 

 

 



ETSII Engineering Collection                                                                                                  HP-41 Programs 

(c) Ángel M. Martin Page 52 of  107  December 2016 
 

Colebrook-White Equation.  [ MOODY, BROOK ]  
From the author’s Engineering Collection, included in the ETSII4 module. 

 
 
This program solves the Colebrook equation using an iterative approach. The input data may 
be either the relative roughness and Reynolds number directly (program BROOK); or 
indirectly based on the flow conditions: mass flow, inside diameter, cinematic viscosity, and 
absolute roughness (program MOODY). The result is the Darcy-Weisbach friction coefficient 
“f”, given by the implicit expression on sqr(f): 
 

1/sqr(f) = -0.86 Ln [ εr / 3.71  + 2.51 / Re sqr(f) ] 
 
 
 
Example: 
 
Calculate the friction factor for a flow with Re= 1 E6 and relative roughness εr = 0.005 
 
Solution: f = 0.031051 
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Pipes in Series with multiple demands.  [ TUBSER ]  
From the author’s Engineering Collection, included in the ETSII4 module. 
 
 
This program has two modes of utilization. In DESIGN mode, it calculates the optimal 
diameters Di for a set of pipes in series with multiple demands, when the costs relation is 
known. In OPERATION mode it calculates the total head required to meet the demand with 
known pipe diameters. 
 
 
The equation for optimal diameter di for a pipe with friction loss factor fi and flow qi is 
shown below: 
 

di =  (λ) [ fi qi^2 ]^(1/a+5);   with a cost relation given as  Ci = A di^a 
where  λ reflects the combined configuration in series, 
λ =  [ k/∆H Σ { Li(fi qi^2)^(a/a+5) } ]^(1/5) ;   i = 1, 2,.. n 
 

Where ∆H is the available total head (or piezometric height between ends of the pipes), and k 
is a constant defined as k = 8/gπ^2 
 
Note that Qi is the flow through each of the pipes – not the discharged flow at the point of 
demand. 
 
Whereas the formula for the total available head when the diameters are known (i.e. not the 
design case) is given by the expression below: 
 

∆H = k Σ [ fi Li qi^2 / Di^5 ];  i = 1,2… n 
 

 
Example. 
 
Obtain the optimal diameters for the pipeline with 15 m of total available head, formed by 4 
individual pipes of fibrocement (friction loss factor = 0.018, and cost relation given by C = 
0.228 D^0.567); with the following conditions: 
 
 

Pipe 1 2 3 4 
Length (m) 500 200 315 180 
flow q (l/s) 100 94 86 74 
 
The results are also provided below: 
Diameter (m) D1=0.2589 D2=0.2532 D3=0.2453 D4=0.2324 
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Rotation speed of multi-nozzle sprinkles.  [ SPRNKL ] 
From the author’s Engineering Collection, included in the ETSII4 module. 
 
 
This program calculates the rotation speed of a custom sprinkler with N nozzles, located at 
different distances Ri from the center of a linear pipe-like frame, each inclined at an angle βi. 
The water intake is at the center of rotation. The flows Q and areas A are assumed to be the 
same for all nozzles. 
 
The program prompts for the data values needed, such as the number of nozzles and their 
distances and orientation angles measured from the sprinkler rod. The rotation speed is 
obtained using the following formulas, with ρ the density of the fluid, and depending on 
whether the resistant torque Mr is constant or proportional to the rotation speed: 
 

Constant: w * Σ Ri^2 = (Mr/ ρQ) – [(Q/A) Σ Ri sin βi ] ;   i=1,2… n    
Proportional: w = - [Q Σ Ri sin βi  ] / { A [(Mr/ρQ) + Σ Ri^2 ) }  ; i = 1,2,.. n   
 

where the negative sign denotes counter clockwise rotation. Angles are positive in the same 
counter clockwise direction from the reference (sprinkler arm). 
 
The program uses the AMC_OS/X functions ARCLI and PMTK during the data entry 
process.  
 
 
Example. 
 
Assuming that there’s no resistant torque; calculate the rotation speed of an irrigation 
sprinkler with 4 nozzles situated as shown in the table below. Each nozzle has an external 
diameter of 10 mm, and an exit flow of 7.5 l/min.  
 
 
 
 
 
 
Q = 1.25 E-4  m^3/s 
A = 1.25 E-4 m^2 
The result is w = 0.5434 rad/s counter-clockwise. 
 
What would it be if there is a resistant torque Mr = 1 Nm? 
 
Density = 1 gr/cm^3  =>   w= 0.2519 rad/s counter-clockwise. 
 
 
 

Nozzle 1 2 3 4 
Ri (m) 1.5 3 -1.5 -3 
βi (deg) 45 45 -90 -90 
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Lift forces on Joukowski aerofoils.  [ PERJOW, JOW, AJOW ] 
From the author’s Engineering Collection, included in the ETSII4 module. 
 

 
 
These programs calculate the sustentation forces on a Joukowski aerofoil immersed in a 
uniform flow U with an angle of incidence α, and the aerofoil is characterized by its 
thickness τ and camber angle 2ε. 

 
The lift force L in the direction perpendicular to the oncoming stream and upwards is given 
by the product of the density, the potential flow and the circulation around the aerofoil Γ, that 
is:   

L = - ρ U Γ 
 

According to the Kutta condition that requires the velocities be finite at the aerofoil’s trailing 
edge, there’s just one possible value of the circulation and it’s expressed as follows, where 
“a” is half the distance to the edge of the foil: 
 

Γ = -4π U a τ sin(α+β);   
 

Therefore the lift force is expressed as:       L = 4π ρ U^2 a τ sin(α+ε)  ;   
 
The main driver program prompts for all the required data automatically. The camber angle β 
is expressed as a function of the maximum camber within the profile (at point of null x-
coordinate) and X-coordinate of the tail point (cusp), using the formulas 
 

2ε = asin { 2 f xt / (f^2  + xt^2) ; and 

The aerofoil is parameterized into its image cylinder using the Joukowski transform (with 
parameter a = xt/2) by the subroutine “JW”, and the results are output sequentially including 
the transformation parameters (circle origin coordinates and radius), the circulation and the 
xy components of the lift force. 

Programs JOW and AJOW are also available to calculate the equivalent coordinates between 
the image plane (circles) and back to the original plane (Joukowski aerofoils) – using the 
transform equations:  

z = z’ + a^2/z’  ; and 
z' = z/2 +- sqr[(z/2)^2 + a^2]     - using the root >= a 
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Examples.  

Calculate the lift forces on a Joukowski aerofoil immersed in a uniform flow of density 1.2 
kg/m^3, and uniform velocity 150 km/h with an angle of attack of 45 deg. The maximum 
camber of the profile (where x=0)  is f=0.214 m, and the coordinates of the head and tail 
points are: xh = -0.904 m,  xt = 0.8m  

The obtained results are as follows: 

ε=14,9760 deg 
R'=0,5499 m 
X0'=-0,1312 m 
Y0'=0,1421 m 
CIR=-249,3013 N s m^2 /kg 

FX=-8.814,1304 N 
FY=8.814,1304 N 
SUST=12.465,062 N 

 

Note.

 

 The routines JW and AJW can be re-written much more efficiently using functions 
from the 41Z module, (pity it wasn’t around 30 years ago ;-) as shown below. The data is 
expected in the stack registers on entry as  shown: R00: parameter a, Y: Imaginary part, X: 
Real part 

01  LBL "JWZ" 
02  Z^2 
03  ZENTER^ 
04  ZENTER^ 
05  RCL 00 
06  X^ 2 
07  + 
08  ZSQRT 
09  Z+ 
10  Z<>W 
11  LASTZ 
12  Z- 
13  END 

01  LBL "AJWZ" 
02  ZENTER^ 
03  1/Z 
04  ZENTER^ 
05  0 
06  RCL 00 
07  X^2 
08  Z* 
09  Z+ 
10  END 
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Water Hammer Transients.  [ ARIETE ] 
From the author’s Engineering Collection, included in the ETSII4 module. 
 
 
This program calculates a simplified 
transient analysis of the pressure inside 
of a forced pipe, when the exit valve 
follows a given closing curve.  
 
The program does not take into account 
the friction so the pressure waves 
would continue to transient 
indefinitely. 
 
Let H0 be the stationary head pressure inside of the pipe, let “a” be the speed at which the 
pressure wave propagates, L the pipe length, and v(t) the valve closing speed equation. 
 
In ideal conditions (no friction dampening) the instant pressure change at the analysis point 
placed at a distance d from the valve (exit), is modelled by the following expression: 
 

H(t) = H0 + a/g Σ (-1)^int(k/2) [ v0 – v(t”)] ; k=1,2..n                  (1) 
 
where t“ is an auxiliary time defined as: t“ = t – t0 int(k/2) + (-1^k) td 
and: n = 2 int[(t+td)/t0]  iif t< tc = td + t0 int[(t+td)/t0] ,  or:   n = n-1  iif t>= tc 
 

t0 = 2L/a is the time it takes for the pressure wave to return to the valve for the first time; 
v0 = v(t0) is the initial speed before the pressure waves affect the analysis point. 
td = d/a  is the time it takes for the pressure wave to reach the analysis point for the first time; 
 
The valve closing speed equation is supposed to be relatively slow – as referenced to the 
characteristic parameters t0 and td. The equation needs to be entered as a separate program 
using a global label. It can also have discontinuities, used to simulate sudden closing steps. 
This is handled by providing the left-value in the Y register, and the right-value in the X 
register.  Because of this, two pressure results per time instant will be calculated, one before 
(H- in the Y register) and another after (H+ in the Z register) the instant t (in the X register). 
 
The user must provide a step size value to calculate the successive pressure values at the 
point of analysis. These can be plotted on the thermal printer using the PRPLOT program as 
well. The program uses the OS/X function PMTA to prompt for the closing equation label 
name. 
 
Note: Equation (1) above was deduced from a conceptual approach, extending the simple 
cases to a general-purpose scheme valid for any time instant. To the author’s knowledge there 
is no reference in the literature for an equivalent expression. The closer I’ve seen is the 
Bergeron Method, used to calculate reflection of electrical signals. 
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Example. 
 
Study the pressure transients at the closing valve(thus d=0) during a time interval of 10 
seconds, in a forced pipe with 1,200 m length. Assume that the pressure wave moves at 800 
m/s (hence td = 2L/a = 2,400/800 = 3 s). For the gravity acceleration use g = 10 m/s^2 to 
simplify the numeric results. 
 
The closing valve equation is given as follows: 
 

v(t) = 1.2 m/s if  0<= t < 1 
v(t) = 0.8 m/s if 1 <= t <3 
v(t) = 0.4 m/s if  3<= t < 4 
v(t) = 0  if t >= 4 
 

Which has been programmed under the global label “V<T>” using the “from right to left” 
rule, as follows:(for your convenience, the ETSII4 module includes pre-programmed this 
valve closing equation, and another one that you can also use to test the operation - under the 
labels “V<T>” and “V(T)”) 
 
 
Using a step size of 0.25 s the results for the pressure changes are shown in the table below: 
 

t H(-) H(+) t H(-) H(+) t H(-) H(+) t H(-) H(+) t H(-) H(+) 
0 0 0 2 32 32 4 64 32 6 32 -32 8 -32 -32 

0.25 0 0 2.25 32 32 4.25 32 32 6.25 -32 -32 8.25 -32 -32 
0.50 0 0 2.5 32 32 4.5 32 32 6.5 -32 -32 8.5 -32 -32 
0.75 0 0 2.75 32 32 4.75 32 32 6.75 -32 -32 8.75 -32 -32 

1 0 32 3 32 64 5 32 32 7 -32 -32 9 -32 32 
1.25 32 32 3.25 64 64 5.25 32 32 7.25 -32 -32 9.25 32 32 
1.5 32 32 3.5 64 64 5.5 32 32 7.5 -32 -32 9.5 32 32 

1.75 32 32 3.75 64 64 5.75 32 32 7.75 -32 -32 9.75 32 32 
 
The critical instants occur at t=1, 3, 4, 6, and 9; with the maximum pressure change occurring at t=6. 
 

01 LBL V<T>” 
02 4 
03 X<>Y 
04 X>Y? 
05 GTO 06 
06 X=Y? 
07 GTO 05 
08 3 
09 X<>Y 
10 X>Y? 
11 GTO 04 
12 X=Y? 
13 GTO 03 
14 1 
15 X<>Y 
16 X>Y? 

17 GTO 02 
18 X=Y? 
19 GTO 01 
20 1.2 
21 RCL X 
22 RTN 
23 LBL 01 
24 1.2 
25 0,8 
26 RTN 
27 LBL 02 
28 ,8 
29 RCL X 
30 RTN 
31 LBL 03 
32 0,8 

33 0,4 
34 RTN 
35 LBL 04 
36 0,4 
37 RCL X 
38 RTN 
39 LBL 05 
40 0,4 
41 0 
42 RTN 
43 LBL 06 
44 0 
45 RCL X 
46 END 
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Bergeron Graphic Method [by E. Thvin] 
From the User’s Program Library Europe #25674, included in the ETSII4 module 
 
 
This program calculates the flows and pressure changes on a reservoir discharge pipe when 
the exit valve closing follows a linear speed.  The geometric data include the pipe length (L), 
its section (S), and the section of the output tube with the valve open (σ). The other required 
inputs are the propagation speed of the sound waves (a), the initial mass flow before the 
closing begins (Q0), and the actual section closing rate (m)  -which must follow a linear 
curve, thus the equation is:  σ(t) = σ - m t. 
 
The over-pressure calculations at a distance from the valve “x” and instant “t” are defined as: 
 

∆P = [ p(x,t) – p (0,0) ] / ρ 
 
Where ρ is the density of the liquid, and p(0,0) is the initial pressure at the valve. 
 
The sound waves move at the propagation speed given by: 
 

a = sqrt { 1 / [ ρ (1/λ + δ / ε E) ] },  
 
with δ the diameter and ε the thickness; λ the compressibility factor of the fluid and E the 
elasticity module of the pipe’s material. For water, the expression can also be written as:  
 

a = 9900 /sqrt[ 48.3 + k δ/ε ],  
  
where k is a constant of the material of the pipe (typical values are k=0.5 for cupper,  k= 1 for 
alloy,  k=1 for lead, k=5 for foundry mixes, etc.) 
 
 
Example.  
 
Calculate the pressure values at a distance x = 260 m from the closing valve in a discharge 
pipe with 1 km length, of cross section 1 m2. Assume the wave propagation to be 1,000 m/s 
and the initial mass flow Q0 = 10 m3/s. The valve nozzle has an open section s = 0.1 m2 and 
closes at a linear rate of  20% during 4 seconds (fully shut). Study the evolution during 8 
seconds, with a step size dt = 1 s. 
 
The results are shown in the table below: 
 

t Q(t) ∆p(t) t Q(t) ∆p(t) 
1 9.1868 813.2241 5 1.5076 102.0886 
2 7.5469 1,913.8012 6 1.7399 -1,195.3174 
3 4.9568 2,077.6468 7 2.3252 -66.8310 
4 2.3360 1,779.1259 8 2.1550 787.9555 
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Association of Pumps in Parallel.  [ PH<Q>,  PQ<H> ] 
From the author’s Engineering Collection, included in the ETSII4 module. 
 
 
With these programs the combined head 
(H) and capacity (Q) values for centrifugal 
pumps associated in parallel are calculated 
using the individual head/capacity curves 
for each pump – modelled as second degree 
polynomials. 
 
 
The H<Q> program will check for minimal capacity error condition if one of the pumps 
would run into stall mode with the given combined flow. 
 
In addition to the driver programs with automated data entry, two subroutines QH and HQ can 
be used for manual operation or other checks. 
 
Let H1 and H2 be the head-capacity curves for each of the associated pumps, P1 and P2. The 
general expressions are modelled as second degree curves, with a2<0, b2<0 for the case of 
pumps: 
 

H1(Q) = a0 + a1 Q + a2 Q^2 ; 
H2(Q) = b0 + b1 Q + b2 Q^2 ; 
 

The program PH<Q> calculates the combined head for a given capacity, and PQ<H> does the 
reciprocal job, i.e. obtaining the combined capacity for a given head. The programs use the 
MCODE function QROOT (also included in the ETSII4 module for your convenience) to 
calculate the roots of the quadratic equations, and provide logic to select the meaningful roots 
for the physical problem. 
 
 
Example. 
 
Obtain the combined flow provided by two pumps in parallel with the height-capacity 
equations given below, when the combination generates a total head of 20 m 
 

H1(Q) = 30 + 2Q – 0.096 Q^2;  Q in l/s 
H2(Q) = 20 + 0.3 Q – 0.015 Q^2;  with Q in l/s 

 
The solution using PQ<H> is:  Q=25,0000 l/s 
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Axial velocity at exit of vane profiles.  [V2M ] 
From the author’s Engineering Collection, included in the ETSII4 module. 
 
 
This program calculates the axial velocity at 
a radius r of an impeller for axial pumps, 
characterized by the ideal head performance 
equation: Ht = a + b r and within the 
boundaries of the blades. 
 
 
 
 
The general expression for the axial velocity 
is given below: 
 

Vm^2 = Vmi^2 + 2gb(r-ri) – 2b (g/w)^2 [a(1/ri - 1/r) + b ln (r/ri) ] 
 

Where Vmi (a constant value) is the exit axial velocity at the root of the blade, and can 
determined as a boundary condition when the flow is known, by means of the following 
numerical integration: 
 

Q = 2π INTG { r Vm(r) } dr  ;    between Ri and Re 
 

Thus this program will first use a numerical integration routine to obtain the value of Vmi, 
and with it, it’ll take upon solving for r in the Vm equation. The nested arrangement explains 
the long execution times, as the integral needs to be calculated at each iteration of the root 
finder! 
 
Both the numeric integration and root-finding routines are included in the ETSII4 module for 
your convenience, so there are no additional dependencies. 
 
 
Example. 
 
Calculate the exit axial velocity at radius r= .25 for an axial pump with the following 
characteristics: 
 

ri=0,17   – interior impeller radius 
re=0,4   – exterior impeller radius 
W= 600 rpm 
Q=2,20 m^3/s 
Ht = 1 + 2 r – theoretical head 

 
The solution is:  V2M = 5,1657 m/s 
And     Vmi = 4,8792;   Vme =5,6857 
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Centrifugal Pump Volute Design.  [ VOLUTE ] 
From the author’s Engineering Collection, included in the ETSII4 module. 
 
This program calculates the geometric 
dimensions of centrifugal pump Volutes with 
Circular, Rectangular or Trapezoidal sections -
reflecting a given configuration and 
performance conditions of the pump, as 
follows: 
 

• Nominal flow thru the impeller, QR 
• Impeller outer diameter, D2 
• impeller rotating speed in rpm 
• Impeller outer width, b2 
• impeller blade exit angle, β2 
• impellers’ Pfleiderer’s coefficient, µ 

(can also be calculated as function of number of blades,ZR -and internal diameter, D1) 
• The friction losses coefficient in the volute, λc (should be zero for circular volutes) 

If a diffuser is installed, the outer diameter of the diffuser, D3 
 
 if it has blades, the fluid exit radial speed, V3u 
 without blades
 

, the friction coefficient in the diffuser,λd 

For Circular section volutes, the volute width at the tongue, bc 
 
For trapezoidal volutes, the volute width at the tongue, bc -and the aperture angle,δ 
 
Once these data are entered the program will prompt for the angle to calculate the outer radius 
of the volute. This can be repeated for many angles in a loop to further characterize the volute 
geometry along the interval [0, 360], i.e. from the tongue to the throat. All angles are entered 
in degrees. 
 
Data Entry requires functions PMTK and ARCLI from the AMC_OS/X Module. 
 
The PPC root-solving “SLV” routine is used for each calculation of the results in rectangular 
and trapezoidal section volutes. It is also included in the ETSII module. Routines “R”, “T”, 
“T0” are used to describe the equation to solve, depending on the diffuser type. 
 
The routine “NT” (NewType) allows for different types of volutes (Rectangular, Trapezoidal, 
or circular), and different design parameters known. 
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Example.  
 
Calculate the dimensions of the three volutes types (use δ = 15 for trapezoidal) for a 
centrifugal pump with impeller rotating at 1450 rpm, without a diffuser and with the 
following configuration: 
 

Qr = 52 l/s 
D2 = 350 mm 
b2 = bc = 10 mm 
β2 = 30 deg 

µ = 0.809 
λc = 0.04 
 

 
 
The solutions are given in the table below; 
 

Angle (deg) Rectangular Trapezoidal Circular (center) Circular radius 
0 (tongue) R=0.1750 R=0.1750 a=0.1750 ρ=0.0000 

90 R=0.3167 R=0.2230 a=0.1924 ρ =0.0174 
180 R=0.8965 R=0.2555 a=0.2000 ρ =0.0250 
270 no convergence R=0.2843 a=0.2060 ρ =0.0310 

360 (throat) no convergence R=0.3115 a=0.2111 ρ =0.0361 
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Pipe network analysis – Hardy Cross method.  [by Marc Peraya] 
From User’s Program Library Europe #26065, included in ETSII4 module 
 
 
This program calculates the flows, pressure drops and 
velocities in a water distribution pipe network using the 
method of Hardy-Cross.  The network size can go up to 253 
registers, as a combination of the number of pipes, and loops: 
#Reg = 13 + #P + #L + Σ (#Pm) 
 
Let  ε  be the pipe roughness in mm and ν the fluid cinematic 
viscosity (for water equals 1.31 E-6 m2/s). Let D be the pipe 
diameter in meters, Q the flow in m3/s, and L the pipe length in m. Then the velocity of the 
fluid is obtained using the Prandtl-Colebrook formula, as function of the per-unit head loss (J) 
and total head loss ∆h = J.L – as per the expression below: 
 

V = { -2 log [ 2.51 ν / D.sqr(2.g.J.D)] + ε / 3.71.D } * sqrt(2.g.J.D) 
with: V = Q/Sec = 4Q / πD^2 

 
writing: A = sqrt (2.g.J.D), this is solved with iterative calculations given by: 
 

An (π D^2/4Qn) = 1 / { -2 log [2.51 ν / D.An-1] + ε / 3.71.D } 
 
The user needs to establish an initial distribution of flows through all pipes based on the 
extractions and insertions at the consumption nodes (junctions). This initial guess is then used 
as the basis for a new adjusted set of values, applying a correction factor to the previous 
values.. The program uses a flow correction factor for each loop until it reaches a residual value 
of 1 E-4 (convergence factor). The flow correction factor is obtained as: 
 

∆Q = { Σ ∆h / 2 Σ |∆h/Q| };     with the new flow being:  Qn = Qn-1 - ∆Q 
 
 

Example. 
 
Calculate the flows, velocities 
and pressure drops for each 
pipe in the network 
represented on the left, with 3 
loops and 9 pipes in total. Use 
a guess initial flow distribution 
Q0 not all zero. The roughness 
is e = 0.1 mm, and the pipe 
data is tabulated below – 
together with the initial flow 
estimation derived from the 
consumption node 
information. 
 

 



ETSII Engineering Collection 

 

(c) Ángel M. Martin Page 65 of  107  December 2016 
 

 
Preparing the input data. 

There are two types of data: Network Data and Pipe data. Each type is store in a separate file, 
and once calculated, the obtained results will be included in the pipe data file. Then you should 
follow the process below: 
 

1. With all the network characterized (extracted flows at the junctions, pipe diameters and 
lengths), choose an initial guess flow distribution through the pipes (not all zero!) 

2. Number the pipes from 1 to “#p”. The order is not unique but must be followed 
throughout the program. 

3. Describe the loops by choosing a reference direction as positive flow. Also try to 
choose them so that there are a minimum number of pipes per loop - this will accelerate 
the convergence of the method and reduce the calculation time. Then number the loops. 

4. The pipe number within a loop is positive if the flow through that pipe has the same 
sign as the convention for the loop. 

 
After entering the roughness, the program presents the main menu shown blow. You can 
always return here by pressing [E] at any time. 
 

 
 
Network File. 
 

–  You create this file pressing [A] in the main menu.  

The network file contains the number of pipes that constitute each loop. The first and last data 
registers contain a zero. Each loop section is separated by a zero-entry in the file. The file size 
is:  S = 1 +#m + Σ #pm, where #pm is the number of pipes of the m-th loop (some pipes will 
belong to two loops). The file starts at R# = (13 +#p), and ends at R#= 13 +#p + #m + Σ #pm 
 
Pipes File.
 

 –  Created pressing [B], modified pressing [ ][b] 

The pipes file contains the diameters, flows, lengths and head losses for each pipe. Each pipe 
requires four data registers; thus its size is S2 = 4(#p – starting at R13. 
 
Calculation and presentation of results. 
 
Single pipe results pressing #p, [D], multi-pipe results pressing bbb.eee,  [ ][d] 
 

 
# D (m) Qo (m3/s) L (m) # Q (m3/s) V (m/s) ∆h (m) 
1 0.40 0.375 300 1 0.383 3.05 5.42 
2 0.40 0.20 300 2 0.195 1.55 1.46 
3 0.15 0.50 200 3 0.038 2.13 5.95 
4 0.15 0.25 250 4 0.013 0.71 0.93 
5 0.20 0.25 200 5 0.039 1.23 1.45 
6 0.15 0.00 300 6 0.001 0.06 0.01 
7 0.20 0.075 200 7 0.79 2.52 5.79 
8 0.20 0.025 250 8 0.29 0.73 1.06 
9 0.20 0.00 300 9 0.004 0.13 0.04 
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Electrical Engineering. 
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Delta-Wye Impedance Transformation. [D<>Y, Y<>D] 
From the author’s Engineering Collection, included in the ETSII5 module. 
 
 
 A standard example for any EE class, this program makes the 
conversion between the Delta and Wye equivalent of a load 
configuration. The data can be entered in rectangular or polar 
form, as selected by the user in the initial prompt. 
 

 
 
If a peripheral printer is plugged in, the programs draws a sketch 
showing the letter convention for each configuration. It then 
proceeds with the prompts for the values of the individual 
impedances. 
 
Let a, b, c the three nodes of the load configuration. We’ll call Za, 
Zb, Zc the three loads in the Wye arrangement between these 
nodes and ground; and Zab, Zbc, Zca the equivalent loads in the 
Delta arrangement between each of them. 
 
The expressions used are the well-known formulas shown below: 
 
Zab = (Za Zb + Za Zb + Zb Zc) / Za 
Zbc = (Za Zb + Za Zb + Zb Zc) / Zb 
Zca = (Za Zb + Za Zb + Zb Zc) / Zc 
 

Za = Zb Zc / (Za + Zb + Zc) 
Zb = Za Zc / (Za + Zb + Zc) 
Zc = Za Zb / (Za + Zb + Zc) 

 
Example. 
 
Convert the Delta configuration given below into the Wye equivalent, then back into the 
original to check the results. 
 

Zab = 1+ 2j ;    Za = 1.01+0.57J 
Zbc = 3 + 4j ;  < == >  Zb.= 0.67+0.33J 
Zca = 5 + 6j ;    Zc.= 2.00+1.67J 

 
 
 
HP-41Z Version. [ ZWYE, ZDLT, DYD] 
 
There are two version of the Delta<>Wye conversions included in the module. The second 
version uses the complex arithmetic functions from the 41Z module, which needs to be plugged 
in to run properly. The U/I is very similar and the same convention is used to name the loads on 
each configuration, thus the same user instructions apply. 
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2-Port Network Matrix Transforms. [ABCD,  Y<>Z, etc.]- [by G. Gil] 
From Users Program Library Europe #25242, included in the ETSII5 module. 
 
 
The first set of routines can come handy to 
calculate the different forms of a 2-port network 
matrix, when one of them is known. The matrix 
elements are stored in an X-Memory File, names 
“HTYZ” so there’s no need to re-enter the results 
to make chain conversions. The Data format is 
expected to be in rectangular form. 
 
 
The program ABCD is useful to calculate the fourth element of a 2-port reciprocal network 
matrix in Transmission Line form (“T”), using the definition relationship between their 
elements: AD -BC = 1 . In this case the data format can be either polar or rectangular form, 
selected by the user at the initial question “MOD? R:P”. 
 
Example1. 
 
Calculate the D element of a quadrupole’s Transmission matrix with the following known 
elements:  A = 1 + 2j  ;  B = 3 + 4j  ;  C = 5 + 6j  
 
The result is:                                    
 D =  11.6 + 13.2 j 
 
 
Example 2. 
 
Obtain the equivalent matrices for a quadrupole with the initial impedance matrix: [Y]:  
 

1+2j ;  3+4j 
5+6j ;  7+8j 

 
The results are shown below 

Z11 =-0.500+J0.438  ;  Z12 = 0.250-J0.1882  
Z21 =  0.375-J0.313  ;  Z22 = -0.125+J0.063 

  
T11 =-1.361+J0.033  ;  T12 =-0.082+J0.098 
T21 = 1.574+J1.311  ;  T22 =-0.279-J0.066 

 
H11 =0.200-J0.400  ; H12 = -2.200+J0.400 
H21 =3.400-J0.800  ; H22=-6.400-J3.200 

 
Note that some of the routines like Y<>H, Y<>Z, Z<>H, and Z<>T are reciprocal and can be 
called twice to undo the conversion – whereas the others are separate routines. 
 
(*) The matrix conversion routines are based on User’s Library program UPLE #25242 written 
by G. Gil. I added the X-Memory file storage to facilitate chained conversions. 
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3-Phase Systems Symmetrical Components. [SYM3] - [by Ed Borrebach] 
From PPCCJ V11N8 p26, included in the ETSII6 module  
 
 
In electrical engineering, the method of 
symmetrical components simplifies 
analysis of unbalanced three-phase power 
systems under both normal and abnormal 
conditions. The basic idea is that an 
asymmetrical set of N phasors can be 
expressed as a linear combination of N symmetrical sets of phasors by means of a complex 
linear transformation. In the most common case of three-phase systems, the resulting 
"symmetrical" components are referred to as direct (or positive), inverse (or negative) and zero 
(or homopolar). The analysis of power system is much simpler in the domain of symmetrical 
components, because the resulting equations are mutually linearly independent if the circuit 
itself is balanced. 
 
The unbalanced initial system {Va, Vb, Vc} is defined in terms of three balanced systems V0, 
V1, V2 – where V0 represents three phasors in direct sequence; V1 represents three phasors in 
inverse sequence, and V2 is the homopolar phasor set. The following relationships define the 
back and forth conversions between the three sets: 
 
 
 

  
 
Where a is the phase operator, defined as: a = 1 <) 120 
 
The program will first ask for the direction of the conversion, whereby “TO” means from 
unbalanced system to symmetrical components
 

, and ‘FROM” is the opposite direction. 

   
 

   or:   
 
 
Example.  
 

Va = 2.093 <) 45   V0 = 0.682 <)-167.89 
Vb = 2.846 <)-140         <=> V1 = 1.208 <) 61.94 
Vc = 1.302 <)-176.48   V2 = 1.674 <) 19.45 
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Mutual Inductance of 2 coaxial loops.  [MUTIND] 
From the author’s Engineering Collection, included in the ETSII6 module. 
 
 
This program computes the mutual inductance of a 
pair of coaxial circular coils as a function of the two 
radii and their axial separation. Using the MCODE 
complete Elliptic Integral functions results in a faster 
execution and more accurate results than using other 
approximations. 
 
This application shows a practical utilization of 
functions ELIPK and ELIPE in the SandMath 
module to calculate the mutual inductance between 
two coaxial circular coils or radius r1 and r2, 
separated a distance “d”. The program is based on the 
example taken from page# 83 of the NASA SP-42 
document, “Space Resources and Space settlements”. 
 
Note the conventions used in the definition, especially for the “k” parameter – not squared! 
 
 
Example. 
 
Calculate the mutual inductance of 2 coaxial coils with radius r1 = 0.2 m and r2= 0.25 m, 
separated a distance of:  0.1 m. How would that change if the separation was d = 0.2 m 
instead? 
 
Test cases: with r1=0.2, r2=0.25 
 

1. d= 0.1 ->MI=2,48787E-7 
2. d= 0.2 ->MI=1,23957E-7 

 
These results are in henries. 
 
 

 
 
01  LBL "MIND" 
02  "R1=?" 
03  PROMPT 
04  STO 06 
05  "R2=?" 
06  PROMPT 
07  STO 07 
08  LBL 00 
09  "d=?" 
10  PROMPT 
11  LBL C 
12  STO 05 
13  RCL 07 
14  RCL 06 
15  * 

16  4 
17  * 
18  RCL 06 
19  RCL 07 
20  + 
21  X^2 
22  RCL 05 
23  X^2 
24  + 
25  / 
26  STO 05 
27  ELIPK(ΣFL# 43) 
28  STO 08 
29  RCL 05 

30  ELIPE(ΣFL# 41) 
31  STO 09 
32  E 
33  RCL 05 
34  2 
35  / 
36  - 
37  RCL 08 
38  * 
39  RCL 09 
40  - 
41  PI 
42  * 
43  8 E-7 

44  * 
45  RCL 06 
46  RCL 07 
47  * 
48  RCL 05 
49  / 
50  SQRT 
51  * 
52  "MI=" 
53  ARCL X 
54  PROMPT 
55  GTO 00 
56  END 
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Power-Flow Equations: Gauss-Seidel.  [PFE-GS ] 
From the author’s Engineering Collection, included in the ETSII5 module. 
 
 
This program calculates the unknown 2n-
variables of a “n”-bus power system, 
when the admittance matrix and the 
remaining 2n-variables are known.  
 
In a power-flow system there is one main 
complex equation for each bus relating 
the active and reactive power to the 
voltages of all the other buses, as follows: 
 

Si = Pi + jQi = Vi . Ii* 
 
This results in the following 2 power equations per each bus - as function of the voltages on all 
the other system buses, where αij are the lag angles between voltage and current and the Yij are 
the elements of the admittance matrix of the system: 
 

Pi = Σ Vi Vj Yij cos(θi – θj – αij) ; j = 1, 2…n 
Qi = Σ Vi Vj Yij sin(θi – θj – αij)  ; j = 1,2,...n 

 
The program prompts for the number of the voltage-controlled buses (PV, those with voltage 
known) –excluding the slack bus (which this program assumes there’s only one!). The slack 
node should be the first ones entered in the bus sequence. This node’s voltage is used as 
reference for all other angles θi. 
 
Also the number of Load buses (PQ) is defined as a consequence of the number of PV voltage 
controlled buses, since the sum of all buses (including the slack) must be equal to the total” n”.  
 
 
Example 1. 
 
Calculate the voltage angles on each node, the reactive power in the two generation nodes and 
the active power in the slack node of a three-node power system with the following known 
variables: 
 

Y11 = -20j ; Y21=   10j  ; Y22 = -20j ;  
Y31 =  10j ; Y32 =  10j ; Y33 = -20j 

 
PD1 = 1;  QD1 = 0.5;    |V1| = 1  (slack bus #1) 
PD2 = QD2 = 0;  PG2 = 1.5 |V2| = 1 
PD3 = QD3 = 1; PG3 = 0 ; |V3| = 1 

 
The results are as follows: 
 

PG1 = 0.5 pu.;; QG2 = 0.057  pu ; arg(V2) = 3.822 deg 
QG1 = 0.523 pu QG3 = 1.036 pu ;  arg(V3) = 0.957 deg 
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Example 2.-   
 
A two-bus power system has the following variables known: 
 

Y11 = 1.841631, <) = -80.48561 
Y12 = 1.904443, <) = 99.197819 
Y22 = Y11 

 
|V1|=1.05,  (δ1 =0) 

 
SD1 = 1.15 + 0.31j 
SD2 = 0.45 + 0.2j 

 
a) If QG2 =0, obtain |V2|, δ2, PG1 and QG1 
b) If |V2|=1, obtain  QG2, δ2, PG1 and QG1  (one voltage-controlled bus) 

XEQ “DEG” 
XEQ “PFE-GS”  
  

Parameter Value (a) (b) Results (a) Results (b) 
#. Buses 2 2   
#.Voltage-Buses 0 1   
|Y(1,1)| 1.841631   
γ(1,1) -80.48561   
|Y(1,2)| 1.904443   
γ(1,2) 99.197819   
|Y(2,2)| 1.841631   
γ(2,2) -80.48561   
PD1 1.1500   
PD2 0.4500   
QD1 0.3100   
QD2 0.2000   
PG1 ? ? 1.6233 1.6171 
PG2 (*) 0 0   
QG1 ? ? 0.5357 0.3171 
QG2 0 ? 0 0.1645 
|V1| 1.05 1.05   
δ1 0 0   
|V2|  ?  1 0.8912 1 
δ2 ? ? -13.6293 -12.9669 

    (*) Assumed to be always zero 
 
 
Note

 

.- This was a difficult program to coax within the limitations of the HP-41. Obviously 
some limitations in the bus definitions needed to be made, but the final result pretty much 
showcased the capabilities of the calculator – and were very surprising to my power systems 
class teacher, who wasn’t sure how that would be possible! 
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Synchronous Machine Swing Equation.  [SWING ] 
From the author’s Engineering Collection, included in the ETSII6 module. 
 
 
With this program you can model the 
transients of a synchronous machine (either 
as generator or as motor) when a sudden 
load change is imposed to the system. 
Typically this is done looking at θ, the 
electrical angle between a point on the rotor 
and the synchronous reference frame. 
 
Using this variable, the basic swing equation 
expressed in system Torque (Mm = 
mechanical torque, kd = damping constant, 
and Pe = electrical power) has the form: 
 

 (J/2p) d2θ/dt2 = Mm + Kd dθ/dt + Pe sin θ / [ω1 + (1/2p) dθ/dt ]    (1) 
 
where 2p is the number of poles in the machine and ω1 is the synchronous rotation speed. Note 
that the last term cannot be simplified for oscillations of large amplitude; i.e. sin θ is not 
equivalent to the angle, and dθ/dt is not null. This introduces some complexity but produces 
more accurate results. 
 
The program uses the 4th-degree Runge-Kutta formula to solve numerically this second-order 
differential equation. The routine is called for each time instant, and the results are stored in an 
X-memory data file (named “SWING”) as data pairs (t, δ). The stabilization time and the 
maximum value of the oscillation will occur at tmax, determined using the control systems 
theory – according to the general expression form of a transfer function it follows: 
 

tmax = π / sqrt [ (2p Pe /J ω1) – (2p Kd /2J)^2 ] 
tstb = 2π J / 2p Kd 
 

whereas the stationary final value can be easily obtained from the equation (1) above, zeroing 
the derivatives of the angle: 
 
 θfinl = asin (Mn ω1 / Pe) 
 
Finally, the program uses a step size for the increments as (h/2) = tmax /60 
 
 
Example 1. 
 
Characterize the oscillations when a 28-pole, 600 kW synchronous generator rotating at 22 
rad/s experiences a sudden change of the load given by Mn = 10 kN.m. Assume a dampening 
constant Kd = 200 N.m/rad.s, and angular momentum of inertia  J = 444 kg/m^2 
 
Results:  The time for maximum angle is  tm = 0,107755 s 
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And the stabilization angle:     θ fnl = 0,375424 
 
The table below summarizes the values for each instant of time where the calculations have 
been made: 
 

t (s) θ (rad) t (s) θ (rad) t (s) θ (rad) 
0,035918 0,172011 0,215510 0,214867 0,395102 0,382101 
0,172011 0,482708 0,251429 0,252188 0,431021 0,311437 
0,107755 0,634696 0,287347 0,386210 0,466939 0,310819 
0,143674 0,546672 0,323266 0,480650 0,502858 0,364791 
0,179592 0,343725 0,359184 0,467154 0,538776 0,415264 

 
 
Example 2. 
 
Repeat the previous example but using the synchronous machine as a motor instead. 
 

t (s) θ (rad) t (s) θ (rad) t (s) θ (rad) 
0,035918 0,172613 0,215510 0,175288 0,395102 0,380103 
0,172011 0,492738 0,251429 0,222591 0,431021 0,273351 
0,107755 0,662513 0,287347 0,396602 0,466939 0,274786 
0,143674 0,570441 0,323266 0,523370 0,502858 0,363795 
0,179592 0,333262 0,359184 0,504751 0,538776  

 
Note that the program will generate data pair results until the SWING file is full, presenting the 
"END OF FILE" message. At that juncture you can enlarge the file (using RESZFL) and 
continue getting more results if so desired. 
 
These results can be represented graphically as shown below: 
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Single-phase AC Regulator.  [SPACREG ] 
From the author’s Engineering Collection, included in the ETSII5 module. 
 
 
This program is useful to calculate the RMS 
voltage on the output load of a single-phase 
thyristor AC regulator; based on the thyristor 
gate delay angle α. Also the current 
extinction angle β is determined, showing the 
message “NO REGULA” in not-regulating 
conditions of the delay angle. The program 
allows for different combination of load 
types, resistor and inductance, arranged in 
series or in parallel.  
 
Let ω = 2πf  the input frequency,  and  Z = R + jL the general load. The expressions used for 
the four different cases considered are shown below: 
 

1. 
 
Resistive Load 

  Extinction angle:  β = π 
 

VRMS =  Vmax  sqrt{ (1/π) [ ( π – α ) + (½) sin 2α ] } 
 

IRMS = 1/R (VRMS) 
 

 
2. 
 

Inductive load 

Extinction angle:  β = 2π − α 
 

VRMS =  Vmax  sqrt{ (1/2π) [ 2( β – α ) +  sin 2α - sin 2β  } 
 

IRMS^2 = (1/π).(Vmax/ωL)^2  f(α, β)   
Where f(α, β) = { (1/2 + cos2α)(β−α) + ¼(sin 2β + 3 sin 2α) – 2 cosα sinβ } 
 

 
3. 
 

R-L load in series. 

Let  the load natural power angle φ = atan (ωL/R). The extinction angle is obtained solving for 
β in the equation below: 

 
sin (β−φ) exp[ βR/ωL] = sin (α−φ) exp (αR/ωL) 

 
in addition, for the regulation to occur the delay angle must also be greater than the load natural 
power angle, that is:   φ <=  α  <= π 

 
The expression for the load voltage is the same as the case 2) above, but not so for the current 
RMS, which is this case is a much more elaborate one (no kidding!): 
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IRMS^2 = Umax^2 / π|z|^2 {  [ ¼( 2(β−α) + sin 2(α−φ) – sin 2(β−φ)] – 

- (ωL/2R) sin^2(α−φ) exp (2Rα/ωL) .[ exp (-2Rβ/ ωL) – exp(-2Rα/ ωL) ] – 
- 2 sin (α−φ) (ωL/R)^2 exp [ (R/ ωL) (α−φ).  f(α,β,φ) } 

with: 
f(α,β,φ) =   exp (-R(α−φ)/ωL) [cos (α−φ) + R/ωL sin (α−φ) ] – 

- exp (-R(β−φ)/ωL) [cos (β−φ) + R/ωL sin (β−φ) ] 
 

4. 
 

R-L load in series. 

The extinction angle is obtained solving for β in the equation below: 
 
sin β { 1 + exp [ R(β−α−π)/ωL] } = (R/ωL) [cos β - cos α] 
 

with the same condition the case before for regulation: φ <=  α  <= π 
 

Finally, the expression for the voltage RMS is below: 
 
VRMS = Vmax/2sqr(π)  sqrt{ [ 2( β – α ) +  sin 2α - sin 2β ] +    
           + 2wL sin2 (β−π) [ 1- exp [ 2R( β – π - α ) /ωL ] } 
 

 
 
 
Program Details. 
 
The U/I guides the user during the data entry stage, with several prompts to determine the 
configuration used. You should use zero values to determine simple resistive or inductive 
cases, and answer “S/P” for the series or parallel case.  
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Data can be changed at any time by executing the routine “ND” – new data – which will 
prompt for a parameters choice until you answer “N” in the “CHANGES? prompt. 
 

     
 
To calculate the extinction angle β the program uses a built-in root-finding routine, “SLV”, also 
included in the module. 
 
 
Example . 

 
Obtain the extinction angles and the RMS values of the load voltage for a series configuration 
with R= 200 Ω and L = 1.1026 H -  using trigger angles between 0 and 180, in increments of 
10 deg. Compare the results with a simple resistive load case. The network data are: input 
voltage RMS Vinpt = 220 V, and frequency f = 50 Hz 
 
The results are tabulated below, and also shown graphically: 
 

Delay 
angle 

Extinction 
angle 

VRMS 
Series R-L 

VRMS 
Resistive 

Delay 
angle 

Extinction 
angle 

VRMS 
Series R-L 

VRMS 
Resistive 

10 NO REG 220 219.88 100 230.01 157.29 137.39 
20 NO REG 220 219.038 110 226.27 136.44 117.77 
30 NO REG 220 216.81 120 221.94 114.37 97.27 
40 NO REG 220 212.67 130 216.97 91.64 76.54 
50 NO REG 220 206.26 140 211.31 68.91 56.30 
60 240 220 197.33 150 204.89 46.97 37.36 
70 238.17 208.01 185.82 160 197.61 26.82 20.65. 
80 235.92 193.42 171.82 170 189.37 9.95 7.37 
90 233.22 176.41 155.56 180 180.01 9.6 E-5 0.00 
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Electric Circuits with X-Mem Files.  [by Guillermo Castarés] 
From the HP-Museum Program Library, included in the ETSII5 module. 
 
Overview  
 
The program solves an electric circuit of several nodes or several loops, and works with AC 
using complex matrix representation of the circuit. It solves DC problems as a subgroup of AC 
problems.  The circuit has to be specified in an ASCII file, and stored in the extended memory 
of the calculator. The program reads this file and prepares a complex matrix. This system is 
solved by the MSYS function of the HP-41 Advantage module. Finally, the program shows a 
complex vector with the results.  
 
This method of entering data allows the user to modify single parameters or components in a 
circuit and solve the new circuit without having to enter all the data again! It's thus possible to 
store different circuits to solve in the extended memory. The program accepts all R or G=1/R, 
X or B=-1/X, Z or Y=1/Z as well as C and L instead of X.  
 
And to round up this task, a new data-entry program is also provided, which builds the ASCII 
file from the scratch in an interactive way just entering the information in the prompts. The new 
data-entry program “EEE” is completely independent, and its end result is the ASCII file to use 
as input for “EEA”, the circuit solver program. Note that it uses functions form the AMC_OSX 
module for a more convenient UI, with step-by-step entry sequences. 
 

     
 

     
 

Requirements  
 

The program was developed for a HP-41CX and the HP-41 Advantage module. With all the 
program routines (EEA, VELS, IELS) loaded in ROM, is possible to solve problems with up to 
ten Loops/Nodes. The following table shows the number of data register required, according 
with the number of Nodes/Loops of the circuit:  
 

Loops/Nodes Data Registers Elapsed Time to solve* 
1 23 1' 30" 
2 39 2' 00’ 
3 63 3' 00”                            
4 95 4' 30" 
5 135 6' 00” 
6 183 8' 30" 
7 239 12' 00” 

 
(*) Approximated. This elapsed time depends on the number of components.) 

 
http://www.hpmuseum.org/software/41/41elcirc.htm 

http://www.hpmuseum.org/software/41/41elcirc.htm�
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The only limit to the number of elements in the circuit is the memory size of the circuit 
description file. The elements can be specified freely sorted, or with no sort at all. Another user 
friendly item of the program is that the number of data registers is automatically set by the  
PSIZE function.  
 

Instructions  
 

The program solves circuits by Nodes Voltages and Loops Currents methods. In the first case, 
only Current Sources are allowed, in the second case only voltage Sources are allowed. If you 
have to solve a circuit with mixed sources types, then you have to convert all of them to the 
same type before to solve the circuit.  
 
The circuit is described in an ASCII file in the extended memory. The name of the file can be 
freely chosen.  The following elements are allowed:  
 

Symbol      Component type 
V      Independent Voltage Source 
I      Independent Current Source 
R      Resistance 
G      Conductance 
L      Inductance 
C      Capacitance 
X      Reactance 
B      Susceptance 
Z      Impedance 
Y      Admittance 

 
The following elements have only one parameter: R, G, L, C, X, B. The following elements 
have two parameters expressed as a complex number in rectangular form: Z, Y, V, I.  
The values of the parameters should be expressed according to the flags 28 and 29 (decimal 
symbol and digit groups). Here we assumed that flag 28 is "Clear" and flag 29 is "Set".  
The first step is to decide if we will solve a Loops Currents problem or a Nodes Voltages 
problem.  
 
Loops currents
 

  

• Identify all the independents loops of the circuit and number them beginning from 1 
(one). All the currents are supposed clockwise. In consequence, in each branch 
(component connecting two nodes) the two currents have opposite courses.  

• If a component belongs to a only independent loop, then it's described as belonging to a 
fictitious loop identified by 0 (zero) (non independent).  

• Only voltage sources are allowed. The polarity of them have to be according to the 
current in the loop  

 
The first record of the input file is: In  
where n is the number of independent loops.  
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The following records of the input file describes one component each one:  
ncm par1 par2  
 
where:  
   n is the number of the first loop  
   m is the number of the second loop  
   c is the component type  
   par1 is the value of the component or the real part of it  
   par2 is the imaginary part of a two parameters component. Assumed 0 if no present.  
 
The last record of the input file is always: END  
 
Nodes Voltages
 

  

• Node is the join of more than two elements.  
• Identify all the nodes of the circuit and number them beginning from 0 (zero). The node 

numbered zero will be the reference one. The nodes numbered from 1 (one) are the 
independent nodes.  

• Only Current power supplies are allowed. Conventionally is supposed that them are 
sending current from the first node to the second node.  

 
The first record of the input file is: Vn  
where n is the number of independent nodes.  
 
The following records of the input file describe one component each one:  
ncm par1 par2  
 
where:  
   n is the number of the first node  
   m is the number of the second node  
   c is the component type  
   par1 is the value of the component or the real part of it  
   par2 is the imaginary part of a two parameters component. Assumed 0 if no present.  
 
The last register of the input file is: END  
 
Starting to solve
 

  

Once the file describing the circuit is ready, it is necessary to put the file name in the alpha 
register to call the "EEA" program:  
 
 Keystrokes:  Display: 
  [ALPHA]   FileName   
  [ALPHA]  
 [XEQ] [ALPHA]  EEA  
 [ALPHA] 
 
If there are capacitances or inductances in the circuit, then the program will ask for the 
frequency.  Finally, the program will show the real and imaginary parts of each current/voltage 
on the circuit.  
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Example  
 
To solve the following circuit, we will use the voltage nodes method, because there is a current 
source.  

 
The first step is to identify the nodes and number them from 0. In this circuit there are a 
reference voltage node (0) and to nodes 1 and 2. Then we have to create the file with the circuit 
description:  

Keystrokes: Display: Comment: 
[ALPHA] CIRC1 [ALPHA] 0,0000         file name 
10 [XEQ] [ALPHA] XEQ _        file size 
CRFLAS [ALPHA] 10,0000        create file ASCII 
[XEQ] [ALPHA] XEQ _   
ED [ALPHA] 00 T        invoke text editor 
V2 [R/S] 01 T        type of circuit and size 
0I1 10 [R/S] 02 T        current source 
0R1 30 [R/S] 03 T        resistance 
1C2 0,005 [R/S] 04 T        capacitance 
1L2 0,01 [R/S]  05 T        inductance 
0X2 -20 [R/S] 06 T        reactance 
0R2 16 [R/S] 07 T        Resistance 
END [R/S] 08 T        end of file 
[ON]  10,0000        exit editor 

 
Once the circuit is described and stored in the extended memory, we can solve it:  
 

Keystrokes:   Display:     Comment: 
[ALPHA] CIRC1 [ALPHA]   10,0000       file name 
[XEQ] [ALPHA]    XEQ _       Invoke the program 
EEA [ALPHA]    0I1 10       shows first component 
     0R1 30       shows second component 
     1C2 0,005       ... 
     FREQ=?       ask for frequency 
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50 [R/S] 1L2 0,01        shows following component 
  0X2 -20        ... 
  0R2 16        ... 
  END        end of file 
  V(1)X=83,7467        V1 real 
[R/S] V(1)Y=-46,7976        V1 imaginary 
[R/S] V(2)X=82,5013        V2 real 
[R/S] V(2)Y=-41,0423        V2 imaginary 
[R/S]  V(1)X=83,7467        shows the first again... 

Some Error Messages  
 

- NONEXISTENT: The file contains a component not supported. The circuit type is "I" 
and contains a current source. The circuit type is "V" and contains a voltage source.  

- NO ROOM: There is not enough memory to solve a circuit.  
- FL NOT FOUND: The specified circuit file doesn't exist.  
- FL TYPE ERR: The specified circuit file isn't an ASCII file.  

 
 
 
 
More Examples. 
 
These are the files for the Math Pac and the Advantage Pac manuals (remember student “AC 
Dimmer”?), and from Grapevine’s “EE for Students” example – all listed with their respective 
solutions. 
 
 

MPAC - Math Pac 
 

ACDIM - Advantage 
 

GRAPEVINE 
0 I4 

 
0 I2 

 
0 I3 

1 0V1 34 0 
 

1 0V1 5 0 
 

1 OV1 120 0 
2 0R1 1 

 
2 0Z1 10 

 
2 0R1 10 

3 1R2 1 
 

3 1Z2 0 200 
 

3 1R2 200 
4 0R2 1 

 
4 0Z2 0 -30 

 
4 1L2 0.50 

5 2R3 1 
 

5 END 
 

5 0C2 1.00 E-5 
6 0R3 1 

    
6 0R2 100 

7 3R4 1 
 

I1 = 0.0372 + 0.1311 j 
 

7 2Z3 300 20 
8 0R4 2 

 
I2 = 0.0437 + 0.1543 j 

 
8 0R3 10 

9 END 
    

9 0V3 84.85 84.85 

      
10 END 

I1 = 21 
      I2 = 8 
    

I1 = 0.570 + 0.342 j 
I3 = 3 

    
I2 = 0.276 + 0.637 j 

I4 = 1 
    

I3 = 0.266 + 0.617 j 
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Backwards Ladder Analysis Program.  [by Gary D. Frey] 
From the hp41.org program library, included in the ETSII5 module. 
 
 

 
Program description. 

One of the simplest ways to analyze a ladder circuit is to assume an output current; then work 
backwards through the network obtaining all voltages and currents in terms of the assumed 
output current. for a linear network, gain and impedance throughout the circuit are independent 
of actual current and voltage levels and the response (all voltages and currents) due to one 
value of excitation may be linearly scaled to anther value of excitation - for example you might 
want to know all voltages and currents within a circuit for a specific input power in order to 
determine the voltage and current ratings of all the components. 
 
'BLAP' is a collection of subroutines for the hp-41c which employs the 'backwards ' algorithm. 
The load current is assumed 1.0+j0 amperes for convenience. This makes the load voltage RL 
volts for resistive load RL and the load power is RL watts. Working back toward the generator; 
if a series impedance is encountered the current is unchanged but the voltage is increased by the 
drop across the series impedance (V = V + Z*ZS). If a parallel admittance is encountered the 
voltage is unchanged but the current is increased by the current flowing through the shunt 
admittance (I = I + YP*V).  
 
A library of 28 series/parallel type elements is available (all simple series/parallel RLC 
combinations. Open and shorted transmission line stubs, and series and shunt impedances). 
two-port elements may also be included in a ladder circuit. Four two-port elements are 
provided: 
 

• GB  resistive feedback gain block 
• BG  “backwards” gain block 
• TL  transmission line 
• TF  ideal transformer. 

 
The gain block is a reasonable approximation of a single transistor broadband resistive 
feedback amplifier which is commonly employed in modern circuit design (AVANTEK. 
OPTIMAX, W-J. ANZAC, etc. amplifiers) and includes the coupling from load to source due 
to the intentional feedback. BG is the same gain block in the reverse direction which allows 
analysis in either direction of any ladder circuit, even one including amplifiers. 
 
All element subroutines are given global labels so that they may be called by a separate 
program which describes the circuit. other elements subroutines may be added to 'BLAP ' -or 
unused ones may be deleted. the subroutine must complete the input current and voltage in 
terms of the "known' output current and voltage for the element being modelled. 
 
A brief study of the register usage, the appendix, and the program listings of some of the 
subroutines used should enable the user to generate his own new elements. 
 
At least two memory modules are required. 
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Six 'compute and print' commands are available in the BLAP program: 
 

• 'RL' initializes load and 'aviews' frequency  
• 'RG' computes and 'aviews' gain 
• 'S' computes and 'aviews' forward and input 
• 'S' parameters (SF and SI) in DB 
• 'Z' computes and 'aviews' Z = V/I at any point 
• 'VP' 'aviews' V at any point 
• 'IS' 'aviews' I at any point 

 
Except for 'RL' which initializes the circuit (and is the first command usually executed), the V,I 
data is not disturbed by any of the commands so these may be executed anywhere within the 
circuit. 
 
“RG" or “S” will normally be the last command executed. in addition to the six commands 
above, register usage in BLAP is compatible with ' PRPLOT ' in the printer rom making it easy 
to plot any desired circuit response. 'PRPLOT' supplies the frequency to the circuit description 
program which in turn returns the computed parameter to ' PRPLOT '. 
 
 

 
Using “BLAP” 

'BLAP' commands may be manually executed to analyze a given circuit at a single frequency; 
however most of the time the commands will be stored in a program in order to 'sweep' the 
selected response versus frequency. the present analysis frequency -in GHz- must be stored in 
register 08 so the circuit description program will usually be contained within a loop which 
increments R08 either linearly (additive increments) or logarithmically (multiplicative 
increments). 'PRPLOT’ automatically provides a linearly incremented frequency (x) loop. 
 
'PRPLOT' can be made to provide multiplicative increments by initially specifying a small non 
zero 'x increment' then multiply R6 by the desired increment in the circuit description program 
(R06 is 'PRPLOT' X), R17 contents are tacked onto the display name for 'Z', 'VP', or 'IS' to 
keep track of the output data. usually start with 0 in R17 at load end and increment R17 by one 
for each new element added. 
  
Begin the program with an 'RL' load initialize command then work toward the generator using 
the element commands to describe the circuit you may assign often-used commands and 
elements to user keys to save time. Output commands may be inserted anywhere intermediate 
results are desired. 
 
The last command within the circuit description loop will normally be either "RG” or “S' to 
obtain the overall response. Examples of 'BLAP' including using the plotter and both linear and 
log frequency scales are included along with the program listing to aid the user in creating his 
own circuit description programs. 
 
Complex number mathematics is usually required for circuit analysis (except at DC or for 
resistors only). 'BLAP' carries complex numbers in rectangular form for all operations in order 
to achieve a speed improvement over using R-P and P-R operations. 
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The routines within 'BLAP' employ only stack registers (X,Y,Z,T,L), R04, and flag 14 . "+” 
and “-“ even save 'last X+jY' in the stack (Z+jT). The complex arithmetic commands may be 
employed for general use outside of ' BLAP ' just remember that '1' uses register 04; all other 
complex operations affect only the stack. 
 

 
Quick reference guide 

# BLAP Commands Data Format Function Performed 
1 RL RL Initialize Load Resistance 
2 RG RG Compute Gain for RG Gen. 
3 S RG Compute SF and SI for RL/RG 
4 Z (use R17 as index marker) Compute Impedance 
5 VP  Compute Voltage to Ground 
6 IS  Compute Series Current 

 
 BLAP Elements Data Format Function Performed 
1 BG R0, ENTER^, GDB Reverse Gain Block 
2 GB R0, ENTER^, GDB Transistor Gain Block 
3 TL R0, ENTER^, θ0, ENTER^, F0 Transmission Line 
4 TF N1, ENTER^, N2 Ideal Transformer 
5 PRXS R, ENTER^, L, ENTER^, C Parallel RLC in Series 
6 PRXP R, ENTER^, L, ENTER^, C Parallel RLC in Parallel 
7 SRXP R, ENTER^, L, ENTER^, C Series RLC in Parallel 
8 SRXS R, ENTER^, L, ENTER^, C Series RLC in Series 
9 PLCS L, ENTER^, C Parallel LC in Series 
10 PLCP L, ENTER^, C Parallel LC in Parallel 
11 SLCP L, ENTER^, C Series LC in Parallel 
12 SLCS L, ENTER^, C Series LC in Series 
13 PRCS R, ENTER^, C Parallel RC in Series 
14 PRCP R, ENTER^, C Parallel RC in Parallel 
15 SRCP R, ENTER^, C Series RC in Parallel 
16 SRCS R, ENTER^, C Series RC in Parallel 
17 PRLS R, ENTER^, L Parallel RL in Series 
18 PRLP R, ENTER^, L Parallel RL in Parallel 
19 SRLP R, ENTER^, L Serial RL in Parallel 
20 SRLS R, ENTER^, L Serial RL in Series 
21 RP R in Ohms R in Parallel 
21 RS R R in Series 
22 LP L  in Nh L in Parallel 
23 LS L L in Series 
24 CP C in pF C in Parallel 
25 CS C C in Series 
26 ZP R, ENTER^, X R+jX in Parallel 
27 ZS R, ENTER^, X R+jX in Series 
28 OSTP R0, ENTER^, θ0, ENTER^, F0 Open Stub in Parallel 
29 OSTS R0, ENTER^, θ0, ENTER^, F0 Open Stub in Series 
30 SSTP R0, ENTER^, θ0, ENTER^, F0 Shorted Stub in Parallel 
31 SSTS R0, ENTER^, θ0, ENTER^, F0 Shorted Stub in Series 
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Complex Math Operator Operation Performed Comments 
“1” X+jY = 1 /(X+jY)  
“/” X+jY = (Z+jT) / (X+jY)  
“*” X+jY = (X+jY) * (Z+jT)  
“+” X+jY = (X+jY) + (Z+jT) Last X+jY 
“-“ X+jY = (X+jY) - (Z+jT) Saved in Z+jT 

 
Register Use: (Min Size 020, DEG mode, F00-04 Clear) 

Register# Purpose Register# Purpose 
R00 Plotter Ymax R10 Plotter Xinc 
R01 Plotter Ymin R11 Plot “Name” 
R02 Plot nnn.aaa R12 Re(V) 
R03 Plot character R13 Im(V) 
R04 Scratch Reg. R14 Re(I) 
R05 Plotter “Fix” N R15 Im(I) 
R06 Plotter Frequency R16 RL 
R07 Plotter “X Units” R17 Index Symbol 
R08 Frequency GHz R18 Scratch Reg. 
R09 Plotter Xmax R19 Scratch Reg. 

 
 
 
Example 1.- (From the Math Pac manual). 
 

   
 

 01   LBL "EX" 
 02   0 
 03   XEQ "RL" 
 04   1 
 05   XEQ "RS" 
 06   2 
 07   XEQ "RS" 
 08   3 
 09   XEQ "RP" 
 10   2 
 11   XEQ "RS" 
 12   7 
 13   XEQ "RP" 
 14   2 

 15   XEQ "RS" 
 16   1 
 17   XEQ "RS" 
 18   4 
 19   XEQ "RP" 
 20   2 
 21   XEQ "RS" 
 22   5 
 23   XEQ "RP" 
 24   2 
 25   XEQ "RS" 
 26   XEQ "VP" 
 27   END 
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Make sure to have the frequency f = 50Hz stored as GHz in register 08: 
5 E-8, STO 08 

 
At the end the program will display:  V0 = 56.00<0.00 
 
Since the system is linear you can scale the voltage down to 7 V, the current I will also scale 
down by a factor of 8, so the actual I is 125 mA, not the 1 A you originally assumed. 
 
 
 
Example 2.- (From the EEE program). 
 
 

01   LBL "CI" 
02   0 
03   XEQ "RL" 
04   16 
05   XEQ "RS" 
06   0 
07   -20 
08   XEQ "ZP" 
09   1 E7 
10   5 E9 
11   XEQ "PLCS" 
12   30 
13   XEQ "RP" 
14   XEQ "Z" 
15   END 

 
Make sure to have the frequency f = 50Hz stored as GHz in register 08: 

5 E-8, STO 08 
 
The result is:  Z0 = 9.59 <) -29.20 
 
If we want to calculate V1 we have to multiply this by I = 10: 

10,  *, P-R 
 
This matches the result provided by “EEE”: V1 = 83,7467 - 46,7976i 
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Appendix. 

The derivation of some of the 'BLAP' element subroutines is presented in this section to aid the 
user in creating customized subroutines for his needs. Familiarity with circuit analysis and 
using the hp-41C are the only prerequisites. 
 

 
Series – Parallel RLC’s 

 
 
Either the impedance of a series RLC or the admittance of a parallel RLC is computed. 'Z<>Y' 
transformation -if necessary- is performed using the 'I' command. Flag 04 is used to distinguish 
between series or parallel ”RLC” connection within the element. F04 is set if the first letter of 
the 'name' is 'P' -. Flag 00 is used to distinguish between series or parallel usage of the element 
within the ladder network - F00 is set if the last letter of the element 'name' is 'P'. F01, F02, and 
F03 are set if respectively R, L, or C are present within the block. The flags are tested later to 
remove any unused elements from the general RLC element. If flags DC and 04 match, the 
element is used as is, otherwise the "1' command converts Z<>Y. 
 
 

 
Stubs. 

Transmission line stubs may also simply be represented as impedances or admittances. The 
shorted stub is represented as an impedance, while the open stub is represented as an 
admittance. 
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The only difference between the shorted stub impedance -Z- and the open stub admittance -Y- 
is R0 versus l/R0. Flag 04 is set for an open stub -first letter "O' and flag 00 is set for parallel 
stub usage - last letter 'P'. Once the stub impedance or admittance is determined the element is 
handed within "BLAP' just like a lumped impedance or admittance. Almost any passive filter 
may be analyzed using only the impedance/admittance elements described above. 'BLAP' does 
not provide all possible RLC combinations; however, and also the user might find it convenient 
and faster to create combinations of existing elements.  
 
Two examples which might warrant their own commands are a quartz crystal -series RLC with 
a capacitor in parallel- and a real coil or resistor -series RL in parallel with a capacitor. These 
elements may be realized using normal 'BLAP' commands only if they are used as parallel 
elements. 
 
 

 
Two-Port Elements. 

All of the elements described so far have either identical voltage on either side -parallel 
element- or identical current on either side -series element. Many very useful elements modify 
both the current and voltage and must be considered as two-port networks - in fact the elements 
described above are special trivial cases of two-port networks·-. The input/output relationship 
of a two-port can be described in many equivalent ways - Z, Y, G, H, S, ABCD depending 
upon the choice from I1, Vl, I2, V2 of the pairs or independent and dependent variable pairs.  
 
In “BLAP” I2, and V2 are the independent variables so we are really using “backwards” ABCD 
parameters. The four two-ports used in BLAP are presented below:  
 

 
 
The two- ports included are all 'ideal' elements. The transmission line and transformer are 
lossless and the gain block is built using an ideal transistor such that the amplifier performance 
is solely determined by the feedback resistors. The gain block has 180 degrees’ phase shift and 
is a perfect match in a R0 ohm system.  
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'BLAP' actually ' designs' each gain block - computes RF and re for specified DB gain and 
system resistance R0 -. Simultaneous perfect match with the gain block is only possible if the 
generator and load impedances are equal. The 'GB ' may always be cascaded with a transformer 
or matching network to obtain any combination of source and load impedances.  
 
The gain block is unconditionally stable since the input and output match is perfect in a R0 
ohm system and the reverse isolation is greater than the forward gain. Candidates for other two-
port elements are limitless. Lossy transmission line, non-ideal transformers, and gain blocks 
having 'real' transistors are obvious examples.  
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Association of Resistors / Capacitors.  [ΣRP, ΣCS] 
From the author’s Engineering Collection, included in the ETSII5 module. 
 
 
Here’s a very simple program to calculate the 
resultant of association of resistors in parallel or 
capacitors in series. Easy does it, just a direct 
application of the well-known formulas for the 
association. Understanding that the same formulas 
are used for both on the appropriate case. 
 
The calculator will briefly show a “sketch” of the 
type of association, as illustrated below: 
 

  or:   
 
The number of components is prompted first, followed by a loop to enter all the individual 
values. Finally, the result sum is shown in the display. 
 
 
Example:   
 
Calculate the equivalent value to 4 capacitors in series, each if 1 pF. 
 

The result is:   
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 Electrical Circuits using the Advantage.  [by C. Coffin and T. Wadman] 
From “EE for Students”, Grapevine Editions – included in the ESTII5 module. 
 
Here’s one of the seminal applications using the Advantage module – The program is 
fundamentally unchanged but it features an optimized U/I and enhanced data output routines 
for additional convenience. The main attributes of the program are:  
 

• It will solve for complex current, power and gain anywhere in a sinusoidal AC circuit of 
up to 12 nodes and 27 elements (CX plus two X-Mem modules) 

• It allows easy storage and recall of these and other complex calculations, including 
parallel-to-series and Why-to-Delta conversions; complex arithmetic and polar-
rectangular equivalents.  

• Allows you to save, expand or alter the circuit analyzed, including the frequency 
• Accepts circuit elements V and I (complex sources) and impedances R, L, C, either in 

units of ohms, henrys and farads – or combined as complex ohms (either in rectangular 
or polar form) 

 
Cold-Starting the Program. 
 
Executing “ADV-Z” initializes the data structures and resets the values to zero state. It then 
presents the main menu as follows: 
 

 
 
Which indicates the available options to the user showing the letters: 

• [A], to Alter the program 
• [ ][a]. to add elements 
• [ ][b]. to build the circuit 
• [C], to Calculate results 

- - - - - - - - - - - - - - - - - - - - - - - - - 
• [D], to enter values in rectangular mode (hidden key) 
• [ ][d], to enter values in polar mode (hidden key) 
• [E], to change to the Equations menu (hidden key) 
• [J], to Jump to previous menu (hidden key) 

 
 
Building the Circuit. 
 
The first three prompts allow you to define the number of nodes, number of elements, and the 
frequency. Simply answer the values and press [R/S]. Next you need to provide the circuit 
topology and element data. At each element prompt you’re required to enter its complex value 
(imaginary and real parts, or argument and module) as well as its “from-to” nodes location. 
Then pressing [R/S] the element type selection uses a secondary prompt with the three 
available options: 
 

   and:   
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If the element is not the last one in the branch, then the “from-to “location uses a negative sign. 
Capacitances use a negative value whilst inductances are entered as positive values – this tell 
them apart from one another for the program to treat them appropriately. 
 
The element data can be introduced in one of three formats: rectangular form, polar form, or 
“physical” form – which uses the combination of resistors and coils or capacitors directly. The 
input mode is selected by user flags F0 and F1, toggled using the options [D] and [ ][d] 
respectively in the main menu. The correspondence between flags and modes is shown below: 
 

Mode Data format Flag_00 Flag_01 
Rectangular mode Imag, ENTER^, Real Clear Set 
Polar mode Arg, ENTER^, Module Set Clear 
“Physical” mode L/C, ENTER^, R Clear Clear 

 
Let’s use the circuit shown below as example for the data entry process, with two nodes 
(besides the reference) and seven elements. The elements will be introduced sequentially, as 
follows: 
 

 
 

e1:  0, ENTER^, 120, -0.01, [R/S]; Voltage  Polar 
e2:  0, ENTER^, 20, 0,01, [R/S];  Impedance Polar or Rect. 
e3:  0.5, ENTER^, 200, 1, [R/S];  Impedance Physical 
e4: -1E-5, ENTER^, 100, 1.02, [R/S] Impedance Physical 
e5:  20, ENTER^, 300, 2, [R/S]  Impedance Rectangular  
e6:  0, ENTER^, 20, -2, [R/S]  Impedance Rectangular 
e7:  45, ENTER^120, 2, [R/S]  Voltage  Polar 

 
After all elements have been introduced the main menu is displayed again – offering to do 
alterations (pressing [ ][a]), general review (pressing [A]), or “Commit” to the matrices in 
memory (pressing [C]). This step is only performed once prior to the calculations of the results. 
 
Once the circuit data has been committed to the matrix structure in memory, the program will 
present the results options, either Power, Voltages or Currents at a certain node or branch – 
always using the same references used to enter the circuit topology in the first place. 
  

 
 
The results are shown in the table below:- Note that after each result the program pointer is 
witihim the “Equations” section, thus we need to press [J] to return to the calculation menu. 
 
 



ETSII Engineering Collection 

 

(c) Ángel M. Martin Page 96 of  107  December 2016 
 

Node 1 Voltage (to ground) 

 
 

Node 2 Voltage (to ground) 

 
 

Voltage between nodes 1 and 2 

 
 

Current 0-1 
Thru resistor 

 
 

Current 1-0 
Thru coil and resistor  

 

Current 2-0 
Thru complex impedance  

 

Current 1-2 
Thru capacitor and resistor 

 
 

 
 
Warm-Starting the Program and Showing Element Values. 
 
Executing “ADV-R” will start the program without resetting the stored values in memory, i.e. 
you can use this to resume a previous analysis or to modify / add / remove components and re-
run the calculations. 
 
Finally, the auxiliary routine “YZ-A” is used internally by the program to display the element 
values as a complex number, as well as showing the “from-to” configurations. It will properly 
interpret the element type (V, I, Z) and whether it’s not the last element in a branch (comma 
character added to the index). 
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Interpretation of Logical Networks.  [by C. Sture Sjöström] 
From the User’s Program Library Europe #10574; included in the ETSII5 module. 
 
 
With this program you may define a logical 
(digital) network, interpret the definition and 
calculate (execute) the output signal for a set 
of input signals to the network. The digital 
circuit may have AND, OR, XOR and INV 
gates. It is defined in ALPHA as a RPN-like 
sequence and can be executed at any time. 
 
The Network is defined in 10 inputs or “bits” {S0 – S9} - each of them may use two data 
registers for a total of 20 reserved. Each input may consist of either a constant signal (zero or 
one) or a description of part of the network. The descriptions may include combinations of the 
symbols below, always following a number (from 0 to 9) representing the logical register 
number upon which apply the operator. 
 

A:  AND 
O:  OR 
X:  XOR (exclusive OR) 
I:   INV 

 
For instance, “34A5O” means “OR between R5 and “AND between R3 and R4”. Each  logical 
input can hold up to 12 characters (split in two data registers with 6 characters each). The 
interpretation will always start using the logical input S0, involving also others when the 
description exceeds that 12-char limit – but data entry doesn’t need to follow a sequential 
register order. 
 
The calculator prompts first for the logical input number (bits 0 to 9), followed by an input 
value prompt: either 0/1 for constant bit values, “A” for an Alpha string, or “R” to review its 
value. 
 

, and:  

  if “A” was selected. 
 
This process will continue until you press [R/S] at the” S#” prompt, which indicates that no 
more inputs are to be used. Note that the data entry can be made in any sequence order. At this 
point the calculation of the output signal will be made, showing the final result in the display. 
You can modify the signal values pressing [D], which will invoke the input prompt. 
 
 
Error Messages. 
 
This program uses functions form the AMC_OS/X module, which therefore needs to be 
plugged in the calculator or otherwise you’ll get the ‘NONEXISTENT” message. The program 



ETSII Engineering Collection 

 

(c) Ángel M. Martin Page 98 of  107  December 2016 
 

uses data registers R23 and up as scratch for intermediate calculations. If the SIZE is not large 
enough the overflow message “OVERFLOW” will be shown and you’ll need to increase the 
calculator size to continue. Other error messages may be “SYNTAX ERR” if the operator 
symbols are used improperly, or “ILL. CHR: x” when non-allowed characters are found (i.e. 
not on the list above). 
 
Saving and restoring Network to/from X-Memory. 
 
You can save the logical network in an X-Memory file using the program option under [ ][a]. 
This creates a data file named “LOGIC” with the contents of the first 20 data registers. Note 
that this will be done automatically every time you perform the calculation of the result. To 
restore the logical network you can use [ ][b]. Then pressing [B] will calculate the result signal 
again. 
 
 
Examples. 
 
The three networks a, b, c  below are to be examined. Note that  the second  is an expansion of 
the first one. The constant inputs are included in the descriptions below. We also want to know 
what happens if the S6 value in the third network is changed to a ”1”. 
 
 
For (a):  S1=0,  S2 = 1,  S3=1,  S4=1 

         
      

                     
 
 
 

 
 
 
 
For (b):  S2=1,  S3=1,  S5=1,  S6=1,  S7=0 
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For (c):  S1=0,  S2=1,  S3=1,  S4=0,  S5=0,  S6=0,  S7=1 
 

      
Written as a single statement, the output signal value can be split into the upper part (stored in 
S8) and the bottom part (stored in S0), as follows: 
 

        and in S8:  
 
The other constant values can easily be entered using the same procedure shown in the previous 
examples. If you do that the final result will be: 
 

        
 
Modifying the value for S6 is very simple: just press [D] and enter “6” at the register number 
prompt, followed by the new constant value s6 = 1 
 
The final result changes to a TRUE one after this bit value change. 
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Truth Table of Logical Networks.  [TRUTH] 
From the author’s Engineering Collection, included in the ETSII5 module. 
 
 
This program calculates the complete truth 
table of a logical network with a generic 
number of bits. The Network is defined as a 
user-provided function calling the individual 
gates subroutines as building blocks – 
whereby it is assumed the input buts are in 
the stack registers X and Y. The bit values 
will be stored in registers R06 and up, thus the minimum size required is N= 6+ #b +1. 
 
The available gates are shown in the table below: 
 

AND OR OREX NOT 
NAND NOR AOI  = AND-OR-Invert 

 
The program will sweep the complete bit range, sequentially assigning one’s and zero’s to their 
values. For each iteration the calculator will show the result value and the input bits. For 
example, for a 4-bit input there’ll be 16 of those results, from “0.0.0.0” to “1.1.1.1.”such as the 
ones shown below corresponding to  “LN1” – Logical network-1: 
 

,    
 
Having a peripheral printer is the most efficient way to use this program, as without it you’ll 
need to copy the results by hand – not too bad if all you need is a few specific results for fixed 
input bit values. Set user fag 21 if you need the execution to halt after each display. 
 
Example. 
 
Build the Truth table for the logical network shown above, with three input bits and 
programmed as follows: 
 

01 LBL “LN1” 
01 RCL 06 
02 RCL 07 
03 XROM “AND” 
04 RCL 08 
05 XROM “AND” 
06 STO 10 
07 RCL 06 
08 RCL 07 
09 XROM “OR” 
10 RCL 08 
11 XROM “OR” 
12 XROM “NOT” 
13 RCL 10 
14 XROM “OR” 
15 END 

A B C Result Y 
0 0 0 1 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 0 
1 1 1 1 
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Decibel addition/subtraction.  [dB+, dB-] 
From the author’s Engineering Collection, included in the ETSII6 module. 
 
 
These two miniature MCODE functions come  very handy to calculate decibel addition and 
subtraction, so you don’t have to take anti-logarithms and care about the needed conversions.  
 
The formulas used are the usual suspects: 
 

dB(x) = 10 log x 
x = 0.1 * alog [dB(x)] 

 
Examples. 
 
Add 8 and 5 dB. Subtract 3 dB from the result. 
The final result is 8.7370 dB. 
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Millman’s equivalence Theorem.  [MILLMN] 
From the Author’s Engineering Collection, included in the ETSII6 module. 
 
 
This short program calculates the voltage at the 
ends of a circuit made up of only branches in 
parallel using the Millman’s theorem expression, 
whereby: 
 

     
 
Where Ri are the resistences on branches without generator, Rk the resistences in branches 
with generators, ek the voltage generators in those branches, and am the current sources (which 
cannot be in series with ek). 
 
The programs first prompts for the total number of branches, and then proceeds into a loop for 
individual branch characterization. For each branch the resistance and voltages values are 
always prompted for. If there are no voltage generators (signaled by your inputting zero), then 
another prompt asks for the current source: enter its value if any, or zero if none. 
 

 
 
When all branches have been entered the program shows the voltage at the ends. Note that the 
resistences included in branches with current sources are not used in the formula. You should 
always follow a consistent sign convention for all voltage generators and current sources. 
 
 
 
Example. 
 
Calculate the voltage at ends of a 3-branch circuit (like that shown above) with the following 
element values: 
 

R1 = 10 Ω ;  R2 = 20 Ω;  R3 = 0.2 kΩ 
e1 = 5 V ;       a3 = 2 A 

 
 

The result is V = 16.129 Volts 
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Transmission Line Impedances.  [by Carter P. Buck] 
From PPCCJ V9N7 p16, included in the ETSII6 module  
. 
 
This routine provides a solution for source and load 
impedances in a transmission line – given a known 
line impedance Z, the characteristic impedance Zo, 
and the electrical length Bs – in units consistent with 
the trigonometric mode set.  
 
The electrical length is usually calculated as product of the physical length by the frequency, 
divided by the speed of light in the medium:  Bs = L. f / s 
 
The formulas used are as follows: 
 

Zs = Zo [ (ZL+j Zo * tan Bs ) / (Zo + j ZL * tan Bs)] ;   

ZL = Zo [ ( Zs – j Zo * tan Bs) / (Zo – j Zs * tan Bs)] 
 

The routine expects the data loaded in the stack as per the table below. Note that this assumes 
the characteristic impedance to be just a resistance, which is the most common case. 
 

T: Bs Z: Zo Y: Im(Z) X: Re(Z) 
 

 
 
Example 1. 
 
A 65 cm length of 75 Ω  line in air operates at a frequency of 465 MHz and terminates at a 
100-j50 Ω load. Find the impedance seen from the source assuming lossless conditions. 
 
Solution: Since the media is air the velocity is the speed of light, 30 cm/ns. Therefore, the 
electrical length is:  Bs = 65 * 465 E6 / 30 E9 = 1.0075 wavelengths, or 2.7 degrees. Thus we 
enter the following data in the stack: 
 
DEG, 2.7,  ENTER^, 75,  ENTER^,  50, CHS,  ENTER^,  100 

XEQ “ZS”  ->   ZS = 93.86 – j 50.77 Ω 
 
 
Example 2. 
 
A 30 cm length of 50 Ω polyethylene line is connected to a 400 MHz generator with an 
impedance of 75 Ω. Find the impedance of the balanced load. 
 
Solution: The velocity in polyethylene is 2/3 the speed of light, or 20 cm/ns. The electrical 
length is therefore 0.6 wavelengths, or 1.2 π rad. Thus the data entry sequence is now: 
 
RAD, 1.2, ENTER^, PI, *,  50, ENTER^, 0, ENTER^, 75 

XEQ “ZL” ->  ZL = 52.38 - j 20.76 Ω 

https://en.wikipedia.org/wiki/File:Transmission_line_4_port.svg�
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Network Frequency Response Analysis.  [by Michael Moser] 
From the User’s Program Library Europe #10786, included in the EE Filters module. 
 
 
This program computes the frequency response on a desired interval of a general linear network 
made up of resistors, capacitors, inductors and voltage-controlled dependent current sources. 
You define the circuit by keying in the number of nodes (i.e. the order), the types and values of 
the components, and the nodes they’re connected to. 
 
The program consists of three blocks: (1) the input stage, (2) the construction of the admittance 
matrix, and (3) a matrix reduction stage. Then successive sweeps will loop showing the 
different electrical outputs with each frequency value. 
 
Let w = 2πf, with f the work frequency. The elements of the admittance matrix are formed as 
follows for the different components: 
 

Resistors : Y(R) = 1/R with R in ohms 
Capacitors: Y(C) = jwC, with C in farads 
Inductors: Y(L) = -j/wL, with L in henries 
Voltg-Cntl’d: Y(VCS) = gm , the transconductance 

 
The following conventions are to be observed: 
 

• Node “0” is the reference or ground node; node “1” is the input, and node “2” is the 
output. A 1-volt reference source is connected between ground and the input node. the 
phase output is always between +/-180 deg 

• For R, L, C components the “from” node cannot be the ground. 
• Problems may occur with inductors in networks at near-zero frequencies. For DC 

analysis you should redesign the network, shorting all inductors and specify the starting 
frequency to be zero. 

• Independent current sources are not supported. All voltage-controlled current sources 
(VCS) are specified so that the voltage is measured between the node and ground, and 
the current leaves ground and enters the “To:” node. 

 
Once the complex matrix admittance (NMA) is formed, the following matrix equations can be 
used to describe the steady-state performance of a network at a given frequency: 
 

 [ Y ]nxn [ V ]nx1 = [ I ]nx1,  and solving for the voltages: 
  

[ V ]nx1 = [ Y ]-1
nxn [ I ] nx1 

 
Since for this program is only necessary to find one mode voltage, the complex matrix 
inversion method is replaced in favor of a faster and simpler matrix-reduction approach. First a 
partition is made, whereby the NAM is expressed as follows: 
 
    [Y11] | [Y12]  Y11 is a square submatrix (n-1)x(n-1) 

[ Y ]nxn  =  -------- | -------- Y12 is a column vector (n-1)x1 
    [Y21] | [Ynn]  Y21 is a row vector for (n-1)-th. element) 
      Ynn is the selected element of the NAM 
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This is followed by a order reduction of [ Y ]nxn to [ Y(1) ](n-1)x(n-1) as follows: 
 

[ Y(1) ](n-1)x(n-1) = [ Y11]  - [ Y12][Y21] [Ynn]-1 
 
The order reduction step is repeated n-2 times, until we obtain a 2x2 matrix: 
 

 [Y’11] | [Y’12]  The required transfer function 
[ Y(n-2) ]2x2  =    -------- | --------  is then given by the expression: 

    [Y’21] | [Y’nn]  V2/V1 = -[Y’21] / [Y’22] 
 
Which is expressed as a magnitude in dB = 20 log |V2/V1|. 
 

 
Program details. 
 
The input routines offer a very convenient method to enter and change the component 
parameters. The modifications made use functions PMTK and ARCLI from the AMC_OS/X 
module, which therefore needs to be plugged in as well. A few program options include: 
 

- Press [H] for a new circuit 
- Press [J] to change the increment mode from Linear to Logarithmic  
- Press [G] to change the increment step or the number of points per decade  
- Press [F] to change the start frequency (Fa) or end frequency (Fe) 
- Press [E] to change a component value (error corrections or design changes) 

 
The prompts will request to enter the element type first, followed by the “from-to” node 
configuration and element value.  Voltage-controlled sources differ from that scheme in that 
they require the dependent voltage instead. 
 

     ,         --  
 

 
Example1. 
 
For the passive RC-filter shown below, determine the 
frequency response from 1MHz to 15MHz at 2Mhz increments. 
The component parameter values are: 
 

R1 = 50 Ω;     C = 1 nF;      R2 = 20  Ω 
 
The analytical expression for the transfer function is: 

Vout / Vin = [1+ j ω.C1.R2]/[1+j ω.C1(R1+R2)] 
 
The results are shown in the table below: 
 

f (Hz) IGI  (dB) <)G  (deg) f (Hz) IGI  (dB) <)G  (deg) 
1 E6 -0.700 -16.5785 9 E6 -8.641 -27.305 
3 E6 -3.802 -32.186 11 E6 -9.235 -24.205 
5 E6 -6.216 -33.4055 13 E6 -9.630 -21.552 
7 E6 -7.714 -30.670 15 E6 -9.903 -19.328 
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Example2. 
 
Compute the frequency response of the active high-pass filter shown below from 10 Hz to 10 
KHz with 3 points per decade. The values of R1 = 10 kΩ;  C2 = 50 µF;  Α= 10 Ε6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

There is a problem concerning the Op-Amp in this circuit. An ideal Op-Amp is defined as a 
voltage-controlled voltage source, and this type of source is not supported by the NAM, node 
admittance model, which can only handle voltage-controlled current sources. But it’s possible 
to transform the Op-Amp into that type adding an inner resistance in parallel, Ri. Therefore the 
Op-Amp can be replaced with the following circuit, where I = A.(U+ - U-) / Ri 

 
Thus the OpAmp is replaced by two current sources (each controlled by the input voltages of 
the OpAmp), plus the inner resistance - all connected between ground and node #2: 
 

 I1 = - A U(+) / Ri, ;  and:  I2 = A.U(-) / Ri 
 
In closed-loop circuits like this one the value of this resistor is not critical; it just has to be 
small enough to not have noticeable influence. In this example we’ve chosen an inner 
resistance of  0.1 Ω – which is very small, compared to the other resistors in the circuit. You 
can also use an inner resistance of 0.01 Ω to check the results, which are practically the same.   
 
The results are shown in the table below: 
 

f (Hz) IGI  (dB) <)G  (deg) f (Hz) IGI  (dB) <)G  (deg) 
10.000 -18.033 86.405 464.16 5.538 18.926 
21.544 -11.428 82.291 1.0000 E3 5.912 9.043 
46.416 -5.037 73.741 2.1544 E3 5.997 4.225 
100.00 0.539 57.858 4.6416 E3 6.016 1.964 
215.44 4.129 36.454 10.000 E3 6.020 0.912 
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Transfer Function Parameters.  [ GS1, GS2 ] 
From the Author’s Engineering Collection, included in the ETSII6 module. 
 
 
This program calculates the representative parameters from the 
transfer function expression of system of first and second order. 
The input data for the program are coefficients of the transfer 
function, and the output results are alternative factors used in the 
description of the systems. 
 
For first order systems the general expression of the transfer 
function is:  G(s) = bo / (a0 +s) 
 
Which can be re-written as:     H(s) = k / (1 + s/τ ) 
 
The program calculates the dampening, the time factor; and the 
location of the system pole (Sp = -ao) 
 
 
For 2nd. Order systems, the general expression of the transfer function is: 

 
which can be re-written as as a function of the natural frequency, dampening and oscillation 
factors. The growth factor, estabilization time, end time, and maximum value time (if under-
damped) are also calculated. 

 
ζ = a1 / 2.ωn;   σ = ζ.ωn; wp = ωn sqrt(1- ζ^2) 
tmax = π/ωp;  te = π/σ; ts = (1+ζ )/ωn 
δ = exp(-σ.π/ωπ);   poles: S1,2 = - σ +/- j ωp 
 

 
Example.  
 
Determine the characteristic factors for a 1st. order system and a 2nd. order system with the 
following transfer functions:    G1(s) = 2/(s +3);      and: G2(s) = 2 / (s^2 + 3.s + 2) 
 
The results are shown in the tables below: 
 

System k = bo/ao τ = 1/ao 
GS1 0.6667 0.3333 

 
Real Pole at: s = -3.0000 
 

System k = bo/ao ωn = sqr(ao) F.DUMP F.GROWTH Te Ts 
GS2 1.0000 1.4142 1.0607 1.500 2.0944 1.4571 

 
This system is over-damped; therefore ωp = 0, and no time of maximum is calculated. 
Real Poles located at:   s1 = -1.000;    s2 = -2.000 


	Written and programmed by  Ángel M. Martin-Cañas
	This compilation revision 1.1.2
	Copyright © 2016  Ángel Martin
	Requirements
	Instructions
	Example
	Some Error Messages

