
UMS-41 Reloaded: extending the Unit Management System.

© Ángel Martin – April 2010 - 1 -

Extending the Unit Management System

Written and prepared by:

Ángel Martin - February 2011

UMS-41 Reloaded: extending the Unit Management System.

© Ángel Martin – April 2010 - 2 -

This compilation, revision A.1.2.

Copyright © 2010 Ángel M. Martin

Published under the GNU software license agreement.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow. See
http://www.hp41.org/

Cover picture taken from NIST Special Publication 811 – 2008 Edition.

Original authors retain all copyrights, and should be mentioned in writing by any party utilizing
this material. No commercial usage of any kind is allowed.

Original UMS implementation copyright Hewlett-Packard Co.

UMS-41 Reloaded: extending the Unit Management System.

© Ángel Martin – April 2010 - 3 -

Table of contents.

1. Introduction . 5

2. Extending the Unit table . 6

a. New Magnitudes and Units 6
b. Same Auxiliary subroutines 8

3. Unit Catalogs . 9

a. New Unit Catalogs . 9
b. Navigation and Hot Keys . 10
c. Improved Error conditions 10

4. Other Utilities . 11

a. Constant Library . 11
b. Alpha Utilities . 11

5. MCODE listing and program remarks 12

6. Appendixes . 20

a. The Extended Unit Table 20
b. Module Table Unit Comparisons 22
c. Module Function Table . 26

UMS-41 Reloaded: extending the Unit Management System.

© Ángel Martin – April 2010 - 4 -

Unit Conversion ROM Function Table

UMS-41 Reloaded: extending the Unit Management System.

© Ángel Martin – April 2010 - 5 -

1. Introduction.

The purpose of this project was the extension of the Unit Management System (UMS)
implementation found in some HP-41 Application Pacs, such as Thermal & Transport Science
ROM.

As impressive as the UMS was – way ahead of its time and cleverly overcoming the inherent
limitations of the calculator design, it wasn’t complete. - Electrical magnitudes and there units
were notoriously lacking and sorely missed. Their inclusion into the UMS has been the main goal
of this extension project. Other enhancements relate to cataloguing the available units, as well as
easier editing of the unit string in the Alpha register.

If you’re reading this you probably are acquainted with the FCON & BCON, SI- & -SI, or CON &
INCON functions. With some differences in design and scope they’re basically the same pair on
each of the three modules that offered UMS, as follows: Machine Construction, Thermal &
Transport Science, and Petroleum Fluids Packs.

The functionality improved from one module to another, with the Petroleum being the better of
the three – not only offering more units to choose from, but also with improvements in the
algorithms (faster searches and better error messages).

This new rendition uses components from both the Thermal and Petroleum modules, sort of
combining the best from both designs. It is therefore a theme module (as much as also being
software archeology), which purpose would be to be used with any programs requiring the unit
conversion functionality.

The following improvements have been made:

1. Added 12 new magnitudes to the table, including electrical and luminal ones.
2. Added 29 more units beyond those included in the Thermal ROM table, 19 of them

corresponding to electrical magnitudes. (*)
3. Added two new dedicated error messages for syntax and non-defined units’ error

handling.
4. Provides a Unit Catalog to review the unit symbol spelling - either sequentially or sorted

by magnitude groups.
5. Provides Catalog hot keys to edit the unit string in alpha on the fly, directly from the Unit

Catalog.
6. Adds some alpha utilities to assist with the unit string creation and handling – both under

program control and in run time.

In addition to the UMS improvements, this new module also includes a mini-library of constants.
Each one of them is accessed by an individual function, getting the constant’s value in the X
register and their appropriate SI units in Alpha – thus ready for any further conversion activity.

Finally, some user code routines are also included for compatibility reasons - to support your own
user code programs that made use of the original ones.

(*) Note that the final unit set is not a complete superset compared to the Petroleum units, as
the more specific units are not included (API, SGR, Gas Volumes, etc).

UMS-41 Reloaded: extending the Unit Management System.

© Ángel Martin – April 2010 - 6 -

2. Extending the UMS Unit Table.

Because of the specificity of the Petroleum units –more dedicated to that particular field - the
basis for this extension has been the unit table from the Thermal & Transport Science Application
Pack – itself a superset of the Machine construction ROM UMS. This however should not
represent any drawback, since the Petroleum UMS is also included in the Unit Conversion Module
– exactly as it is in the original one.

Other units also not included in the extended table are some of the standard multiples
(MegaPascal, MegaNewton, MegaJoule, etc). They were deemed to be less important than the
other new main units for different magnitudes which competed for the same table space.

The code largely borrows from both implementations, effectively using some sections from the
Thermal Pack and others from the Petroleum module. All multiplying factors are by design to be
contained within a module quad, and therefore the space limitation.

Here are the new units and their magnitudes not included in the Petroleum Unit Table (those in
black are present in the Thermal Pac table, whereas those in blue are completely new:

UMS-41 Reloaded: extending the Unit Management System.

© Ángel Martin – April 2010 - 7 -

At the core of the UMS is the Unit Table, which stores the offsets to the location addresses for
the different unit multiplying factors within the ROM. The structure of the multiplying factor
consists of an alphabetical header, a magnitude code (used for dimensionality checksums), plus
the actual multiplier. The header last character has 200 Hex added to its corresponding code to
signal the end of the character string for the unit symbol. These symbols are read by the Unit
Catalog routines, as will be covered in the next section.

Of all the new magnitudes added, the Ampere and the Candela are primary units – used to derive
all others from the same group. They have special relevance in the UMS implementation, as the
magnitude codes are used in the dimensionality checks performed prior to any unit conversion.

The following table lists all codes for the Extended Unit Table. Note that the primary ones are all
prime numbers – which is required to ensure the uniqueness of the compounded magnitude
groupings.

In spite of not being the main unit of the magnitude, some multiples and sub-multiples (such as
pF, mH, and kOhm) are added to the new table given their practical application in real
calculations.

The designers of the UMS came up with a superb implementation of their concept to build up
powerful unit conversion functionality. As you can expect, some amount of Software reverse-
engineering and assumption making was involved to second-guess the design and working
structure of the UMS (I didn’t even know about the 1983 Maryland Conference proceedings until
after completing the additions – which made the process all that more enjoyable!).

Whilst all main areas of the code are well characterized there are a few that remain somewhat
unclear, such as the section immediately preceding the Unit Table in the Petroleum Pac – which
function is to expedite the unit search – yet I’m not clear on which criteria was used to select the
“representative magnitudes” – and therefore it’s not used in the Unit Conversion module.

UMS-41 Reloaded: extending the Unit Management System.

© Ángel Martin – April 2010 - 8 -

Auxiliary Subroutines.-

The Unit Conversion module includes the same User Code subroutines available on the Thermal
Pack (plus one from the Petroleum Fluids Pac) to further integrate the UMS into your own FOCAL
programs. Refer to the corresponding manuals for usage instructions and other details.

The routines are:

“UNIT?” Used to select whether the UMS should be used for data entry and results

“SZ?” A size error prompt (superseded by SIZE? & PSIZE combination)

“INPUT” To select the unit of the input magnitude

“OUTPUT” To select the unit of the output magnitude

“KEY?” For a typical key selection choice program

“Y/N” A general purpose Yes/No input routine

“*YN” A poor’s man version of the previous one (using user flag 00)

Some of these are clearly improvable using Extended functions and other Custom modules
introduced chronologically after the introduction of the UMS – but nevertheless are here for
completion sake, and to offer a more complete set of utilities.

Clearly using SIZE? & PSIZE combined supersedes the functionality of “SZ?”, and PMTK in the
CCD Module (or the CCD OS/X derivative) is a much more powerful and complete implementation
of “KEY?”. The following listing would be a modern-day (the irony is intended) rendition of the
same routines, just for illustrative purposes:

 call it with the required size in X.

call it with the hot-keys in Alpha

Unfortunately the lack of space prevents from adding PMTK to the module, but on the other
hand the 4k version CCD-OS/X is such a fundamental addition to the main 41 OS that it should
always be included in the calculator configuration - so it’s actually better this way to avoid
function duplication.

UMS-41 Reloaded: extending the Unit Management System.

© Ángel Martin – April 2010 - 9 -

3. Unit Catalogs.

As the unit tables get larger it becomes more challenging to remember the exact spelling of each
unit symbol, resulting in frequent Invalid Conversion error conditions. A Unit Catalog is therefore
almost an obvious addition to the UMS – and as such it was mentioned in the old HP
documentation as a next addition, which obviously never came into being. Until now, that is.

There are three unit catalog functions in the Unit Conversion Module. The first one (UCAT, Unit
Catalog originally written by Peter Platzer) lists all unit symbols sequentially, following the order
in which they are stored on the Unit Table. This used to be alphabetical in the original
implementation – but has been modified in this new incarnation for reasons explained in the next
paragraph.

The second function SCAT (Section Catalog) is an extension to the previous one that adds a
prompting entry to select the magnitude section to start the listing from. Section numbers range
from 1 to 5, as follows:

1. Geometry Section (length, surface and volume units)
2. Pressure and Force Section
3. Matter and Mass section (Mass, Density, Viscosity, Temperature)
4. Energy, Power and Time Section
5. Electrical and Luminal Section

The units listing will continue until the end of the table is reached (i.e. end of section 5)
regardless of where it got started. This is not perfect but good enough for the majority of
circumstances where one’s looking for the appropriate specific unit symbol.

The third function PCAT (Petroleum Catalog) is just the same as UCAT but applied to the
Petroleum Unit Table – which as was said in previous sections, is also included in the Unit
Conversion Module as a separate one for compatibility reasons. This listing will be done
alphabetically here as this table has not been modified.

Note that while both UCAT and PCAT are programmable, that’s not the case with SCAT. Note
also that the need for section grouping is the reason why the new unit table is not alphabetical
anymore.

Navigating the Unit Catalogs.

The catalogs can be paused and resumed at any time using R/S. Besides, you can use SST and
BST to single-step the units forwards and backwards, and resuming the listing with SHIFT
activated will list them in reverse order. Use the arrow key to stop the listing and return to the
main OS.

• A running catalog will automatically terminate when it reaches the end of the unit table
(or the beginning if running backwards)

• A single-stepped catalog will not go beyond the last unit (or first one if moving

backwards) even if you keep pressing SST (or BST). To terminate it you can press R/S or
the back arrow key.

• Use R/S to toggle between continuous and single-step catalog display at any time during

the execution.

UMS-41 Reloaded: extending the Unit Management System.

© Ángel Martin – April 2010 - 10 -

Catalog Hot-keys.

With the unit catalog paused, (i.e. in single-step mode) you can use the following keys to
directly edit the unit string in the Alpha register in the following manner:

• [ENTER] – Clears Alpha and adds the displayed unit symbol to the string.
• [SHIFT],[ENTER] – Appends the displayed unit as destination field in the unit string

(i.e. appends “-” plus the unit symbol to the text already existing in Alpha.
• [*] - Appends the displayed unit as multiplying unit (i.e. appends “*” plus symbol)
• [/] - Appends the displayed unit as dividing unit (i.e. appends “/” plus symbol)

In this way it’s rather simple to build complete unit string just by pressing the corresponding hot
keys during the catalog listing – without needing to remember the exact spelling of the unit
symbols. Obviously it’s still the user’s task to recognize the symbol and identify it with the
corresponding unit name. Of course you can edit the Alpha register directly as always just typing
the syntax in Alpha mode - if that’s your preferred choice.

Note that there are no checks for the string built – so it’s possible to press [/] multiple times, or
repeat [SHIFT],[ENTER] – which obviously would not be a valid string. Note also that after every
usage of a hot key you need to re-start the catalog listing again if you want to continue to build
the complete unit string. A small price to pay for the convenience to occasional users (aren’t we
all?) to avoid syntax errors!

Meaningful Error Conditions.

The Thermal Pac only used standard OS error messages (like ALPHA DATA and DATA ERROR) to
inform the user of an error condition. It did NOT report unit spelling errors either, ignoring them
even if user flag 25 was cleared! The Petroleum Pac improved on that with its dedicated error
message “Invalid Conversion”.

This however wasn’t very informative, as it didn’t indicate where exactly was the problem: either
a syntax error (like typing the sigma or percent sign), an invalid unit string (non-homogeneous
source and destinations), or a misspelled unit symbol all produced the same “INVALID CONV”.
Besides it didn’t signal the ALPHA DATA condition anymore – clearly a step back here.

The Unit Conversion Module recovers the alpha data message and adds two new messages to
the Invalid Conversion condition – offering four error-trapping cases, and so making error
detection and correction a much easier task, needless to say. The messages are as follows:

ALPHA DATA – when a non-numeric input is in X
SYNTAX ERROR – when using illegal characters (like lower-case letters)
NO SUCH UNIT – when the alpha string contains a symbol not on the unit table
INVALID CONV – when the unit string is not dimensionally correct.

UMS-41 Reloaded: extending the Unit Management System.

© Ángel Martin – April 2010 - 11 -

4a. Constant Library.

What good is a Unit Conversion Module without a constant library? A pretty good one if you ask
the author- but nevertheless a few universal constants are also programmed into the module for
completion sake.

The implementation is a rather simple one, with an individual function in the module for each
constant. A better way to implement it would have been a table-based constant catalog that also
allowed individual retrieval, but not being the main purpose of the project it was good enough to
illustrate the example.

The main contribution to this section is that not only the constant value is written in X, but also
that its units are returned into the alpha register when the function is called – so you always
know how they’re expressed.

The constants included, their values and appropriate units in which they are expressed are listed
in the following table:

Name Description Value Units
cc Speed of Light 2,9979245 E 08 M/S
e- Electron Charge -1,6021764 E-19 CB
eM Electron Mass 9,1093821 E-31 KG
E0 Vacuum Permitivity 8,8541878 E-12 FD/M
EH Hartree Energy 4,359748226 E-18 J
Ga Free-fall Acceleration 9,80665 M/S2
GEU Euler's Gamma Constant 0,577215665
GG Gravity Constant 6,6742800 E-11 N*M2/KG
HP Planck's h constant 6,6260689 E-34 J*S
K Boltzmann's Constant 1,3806504 E-23 J/K
NA Avogadro's Number 6,0221417 E 23 1/MOL
PM Proton's Mass 1,6726216 E-27 KG
R Gas Constant 8,314472150 J/K*MOL
SG Stefan-Boltmann 5,6705119 E-8 W/M2*K4
U0 Vacuum Permeability 1,2566370 E-06 N/A2

4b. Alpha Utilities.

Finally, a handful of alpha routines are included in the Unit Conversion module to facilitate the
editing of the unit string under program execution. These are:

A<>RG Swaps Alpha and memory registers Prompts for first Register (*)
A<>ST Swaps Alpha and Stack In descending order M,N,O,P
ABSP Alpha Back Space To remove the last character
AIP Alpha Integer Part To append powers of units (M2, etc)
CVIEW continuous VIEW Regardless of Flag 21 Setting
CLA- Clear Alpha from "-" char Not the Same as the CCD Module
USWAP Swaps alpha around “-“ char Interchanges “From/To” Unit info
(*) Programmable: Uses next program line for REG#.

UMS-41 Reloaded: extending the Unit Management System.

© Ángel Martin – April 2010 - 12 -

Unit Catalog MCODE Listings & Program Remarks.-

The original unit catalog routine was swiftly written by Peter Platzer - providing a proof of
concept with both the run mode and the single-step mode. The author added the SHIFT handing
code and the hot-key choices for editing the unit string in Alpha. Glad to see this kind of
collaboration going on!

Note that both UCAT and SCAT share the same code, thus with exception of the prompting
feature they are but identical. They list the units from the extended Unit table, whereas PCAT
points at the Petroleum unit table instead – listing them alphabetically as initially laid down. It
also shares the main code sections, so the same convenience features are available as well.

Notice the prompting bits in the SCAT function title, allowing a single digit numeric prompt
(including IND and STK support). We first start by checking that the prompt argument is less
than 6 – aborting if that’s not the case. (Note that zero will be equated to one). UCAT’s simply
jumps to the first section’s entry point, bypassing the initial selection.

The hard-coded addresses in the next code lines refer to the current location of the Unit Table
sections within the module. They’ll therefore have to be changed if the table is expanded or re-
arranged.

Once the section number is determined it’s saved in N[adr] field for later use. Then some
initialization is performed, clearing the display, CPU flags F8 and F9, and we find out which
expansion port number “p” the module is plugged into using the [PCTOC] routine – this is used
to store p400 Hex into both A[adr] and B[adr] as address counters for later usage in the main
loop. We’ll further add the section offset to A, and once we’ve got the start of the section address
stored in A[adr] we’re ready to enter the main loop, where all the action takes place

CPU Flag 9 is used to control the automated or the single-step mode of operation. When set, the
other hot-keys can be accessed as well – part of the ?KEY main loop.

CPU Flag 8 is used to signal that SHIFT has been pressed. Note that SHIFT remains up until it’s
pressed a second time – a common practice used in other extended catalogs, like those from the
CCD ROM.

UMS-41 Reloaded: extending the Unit Management System.

© Ángel Martin – April 2010 - 13 -

At this point B[adr] contains p400 Hex, and A[adr] the selected section start address.

Firstly we’ll FETCH the word placed at A[adr] and establish the end- or beginning of table
condition. The End-of-Table condition is clearly signaled when word 000 is reached. However its
beginning doesn’t have an immediately recognizable mark. This is important when running (or
single-stepping) backwards to stop the listing. The code interrogates the magnitude code word,
looking for 200 Hex as the indication for the table initial entry.

UMS-41 Reloaded: extending the Unit Management System.

© Ángel Martin – April 2010 - 14 -

If the word fetched was neither the last or first one we’re to read the unit symbol characters
sequentially, until we find the last one - which has a 200 Hex offset to its char number. Because
the char code in Alpha has 40 Hex added to the display char code, so we’ll have to adjust it
accordingly. Note that checking for char validity, adjusting the code and adding it to the display is
all done within the same loop – and that CPU flag U9 is checked for single-step mode as well (the
behavior will be different: terminate in run mode, hold-up in single-step mode).

With the complete unit symbol placed on the display we proceed to left-justify it using [LEFTJ].
Note how we needed to preserve A during the left-justification step, since it’s used by [LEFTJ]
but also holds the address of the current unit fetched from the unit table. We use N to save it
temporarily and restore things back after the justification.

We now move right into the ?KEY loop where we’ll wait for a key to be pressed if in single-step
mode, or move on to the next unit (after a small delay pause to see the unit name) if in run
mode - as determined by the status of flag 9.

UMS-41 Reloaded: extending the Unit Management System.

© Ángel Martin – April 2010 - 15 -

If a key is pressed it will be detected by ?KEY while the CPU is busy doing nothing but counting
in the delay loop. Then the execution will jump to line A201 to decode the pressed key and
determine the corresponding action, as follows:

• If R/S is pressed, toggle flag 9 status and get into single-step mode if F9 was clear – or
revert to run mode if F9 was set

• If any other key is pressed, do nothing in run mode or process the corresponding action
if in single-step mode.

When no keys are pressed the execution will continue, going on to display the following (or
previous) unit from the unit table: we’ll check flag 8 to see whether we’re going forwards or
backwards to either add or subtract one to/from the previous address in A[adr]. If in run mode
the display is cleared (but not disabled) after the delay loop is complete and we loop back to the
beginning of the process.

UMS-41 Reloaded: extending the Unit Management System.

© Ángel Martin – April 2010 - 16 -

If in single-step mode we continue comparing the key pressed with the other six single-cased
ones: BackArrow, ENTER, SST, SHIFT, *, and /. Each case will have independent code to handle
the actions.

For the Back Arrow case, it’s quite trivial: we simply terminate the execution with ?NC RTN,
which seems to work quite well – even restoring the SHIFT annunciator if it was active – and this
is rather surprising as it doesn’t occur anywhere else in the code!

For the SHIFT case, we’ll toggle the status of F8 to switch back and forth, and return to the
main ?KEY loop. We also need to toggle the SHIFT annunciator to provide visual feedback to the
user – and this must be done by our code because the ?KEY loop does not yield CPU control back
to the OS – and thus it isn’t done in the [TOGSHF] routine. We use [ANNOUT] for this.

Notice also that [TOGSHF] returns with the display not enabled and thus must be re-enabled
before transferring the execution back to the main ?KEY loop.

For the SST case we’ll simply transfer the execution to the section where one was added or
subtracted to the current table address in A[adr] – depending on the status of F8.

So far we’ve dealt with the navigation keys, it’s time to see about the hot keys next.

UMS-41 Reloaded: extending the Unit Management System.

© Ángel Martin – April 2010 - 17 -

For the “*” and “/” cases we’ll need to append the corresponding character to the Alpha register,
followed by the current content of the display – which is holding the unit symbol. This is
independent from the status of F8 – the SHIFT indicator.

The ENTER case is either a subset of the above (when SHIFT is not active), or a similar case only
appending the “-“ character instead (when SHIFT is up). So logically all code to handle the hot-
keys will be quire similar and shared, as follows:

Notice that we cleared Alpha when unshifted-ENTER is pressed, to begin building the unit string –
and that this required enabling chip-0 to access the alpha registers M,N,O, and P.

We’re now ready to transfer the display contents to the Alpha register, but remembering that it
was left-justified we’ll have to ignore all those blank space characters located at the right side of
the unit symbol text.

Once all non-blank characters are read from the display and appended into Alpha (which will
require enabling & disabling the display for each char) we’ll exit the routine but not before tidying
things up, like clearing the display and the SHIFT annunciator if it was on, resetting the keyboard
status bits using [RSTKB], and prompting the contents of the Alpha register using [XAWIEW]
(which would hold a partial or complete unit string by now) to provide the final visual feedback to
the user.

UMS-41 Reloaded: extending the Unit Management System.

© Ángel Martin – April 2010 - 18 -

The [EXIT] subroutine is executed when reaching the beginning of the unit table running
backwards in run mode. Strangely enough the SHIFT indicator would not clear unless the
[RSTSQ] routine is run, so it couldn’t be handled by the normal ending of the ENTER case above
it (lines A262 to A26A). – which conversely, would not work unless [TOGSHF] is called!

So a bit of mystery– or rather not fully understood behavior - to end things… any reader
comments to explain this better would be appreciated ☺

The following MCODE listing corresponds to the PCAT routine, which uses the same main code
only pointing at a different Unit Table within the module. There’s nothing much to point out or
remark, apart from a straight transferring to the appropriate section within UCAT – i.e. good old
code reuse!

UMS-41 Reloaded: extending the Unit Management System.

© Ángel Martin – April 2010 - 19 -

UMS-41 Reloaded: extending the Unit Management System.

© Ángel Martin – April 2010 - 20 -

Appendix: The Extended Unit Table.-

Below you can see the new look of the Unit Table, with the units sorted by their magnitude
sections. New ones are in blue on yellow background.

UMS-41 Reloaded: extending the Unit Management System.

© Ángel Martin – April 2010 - 21 -

The addresses for the corresponding multiplying factors are actually formed by adding 4000 Hex
to the word values from the table. This means all of them must be contained within the second
quad (from 4000 to 7FFF).

There are about 12 available places to extend the table with more units, but further re-
positioning of the main code would be required to ensure that the corresponding multiplying
factors are located within Quad 2.

The unit symbol for Mol has been changed to MOL (like it’s done on the Petroleum Pac) for
obvious consistency reasons. The SLUG and POISE have however been kept the same despite
their rather lengthy text.

UMS-41 Reloaded: extending the Unit Management System.

© Ángel Martin – April 2010 - 22 -

Appendix.- Module Unit Table Comparisons

The following five sections correspond to the UCAT prompting function argument:

1. Geometry Units.

2. Force and Pressure Units`

UMS-41 Reloaded: extending the Unit Management System.

© Ángel Martin – April 2010 - 23 -

3. Matter & Mass Units.

4. Energy, Power & Time Units

UMS-41 Reloaded: extending the Unit Management System.

© Ángel Martin – April 2010 - 24 -

5. Electrical & Luminance Units

Conclusion.

The Unit Conversion Module offers a superset of units and magnitudes when compared to either
the Thermal Transport or the Machine Construction Pacs. It does not, however, have all units
found in the Petroleum fluids pac – which were too specific to the trade or multiples of other
existing units.

Those units unique to the Unit Conversion module have yellow background, whilst nits unique to
the Petroleum Pac have orange background.

So life is about choices and here too you’d need to choose which unit table to use, as follows:

• Use SI> and >SI for the new extended Unit Table,
• Use DCON and ICON for the Petroleum Unit Table.

Both are included in the Unit Conversion Module, so the choice should be an easy one, and
without any trade-offs to make.

UMS-41 Reloaded: extending the Unit Management System.

© Ángel Martin – April 2010 - 25 -

Unit Conversion Module – Function Table

