
The ICEBOX.ROM is an ongoing project by Geir Isene - a continuation
of the work laid down by Ángel Martin. He created the Toolbox.rom, a
compilation of very useful MCODE routines, some written by himself and
many written by several other MCODE experts. It is especially aimed at

NoV users (see http://www.clonix41.org)

This work is licensed under the GNU General Public License version 3.
This Quick Reference Guide is for ICEBOX.ROM version 1H, aka “Height”.

Some functions inherited from the Toolbox.rom are still cryptic to me. If you have information
that can help me fill out the question marks throughout this manual, please let me know.

 XROM XROM NAME NAME SHORT DESCRIPTION SHORT DESCRIPTION SOURCE SOURCE

04,01 >244 Convert HEX to 244 format Geir Isene, ICEBOX.ROM

Input: 10 bit hex word in 442-format in Alpha

Output: 10 bit hex word in 244 format in Alpha

Converts a 10 bit hex number from 442 format to 244 format.

Example: The 10 bit word 1111111111 (binary) can be seen as 11 1111 1111 (244 format) or
1111 1111 11 (442 format). The hex values would be 3FF or FF3 respectively.

04,02 >442 Convert HEX to 442 format Geir Isene, ICEBOX.ROM

Input: 10 bit hex word in 244-format in Alpha

Output: 10 bit hex word in 442 format in Alpha

Converts a 10 bit hex number from 244 format to 442 format.

Example: The 10 bit word 1111111111 (binary) can be seen as 11 1111 1111 (244 format) or
1111 1111 11 (442 format). The hex values would be 3FF or FF3 respectively.

04,03 A<>R Swap Alpha with Registers Geir Isene, ICEBOX.ROM

Input: N/A

Output: N/A

This function swaps the content of the Alpha register with four register in RAM memory (the
normal register). You can tell the function which registers you want as target register by
setting flags 0-3. Please refer to the function X<>F to learn what the combinations of flags
means.

Example: Setting flags 0 and 1 will make register 03 the starting register for swapping. The
four register that is swapped with Alpha are always consecutive (so in the example above,
register 03-06 will be used).

04,04 aNN<>X Absolute ex. Reg. with X Ángel Martin, Toolbox.rom

Input: Content to be replaced with Reg NN in X, Reg# in Y

Output: Content of Reg NN in X

Exchanges content in X with absolute register address given in Y without normalization.

04,05 aNRCL Absolute NRCL Ken Emery, MCODE for beginners

Input: Reg# in X

Output: Content of Reg# in X

Recalls the contents of the registers without normalization, but more powerful because it
uses the absolute address instead of the register number as input in X.

Thus it is possible to recall anything from main memory, including status registers (from 0 to
17), buffers and Key Assignment areas, and even Extended-Memory registers.

04,06 aNSTO Absolute NSTO Ángel Martin, Toolbox.rom

1H1H

http://www.clonix41.org/
http://www.clonix41.org/

 XROM XROM NAME NAME SHORT DESCRIPTION SHORT DESCRIPTION SOURCE SOURCE

Input: Content to be stored in X, Reg# in Y

Output: N/A

See aNRCL

04,07 BCD>BIN Binary to BCD Ken Emery, MCODE for beginners

Input: Binary (hex as NNN) in X

Output: BCD (decimal) in X

Converts between binary and BCD. Used internally also as subroutines for other functions.

04,08 BIN>BCD BCD to Binary Ken Emery, MCODE for beginners

Input: Binary (hex as NNN) in X

Output: BCD (decimal) in X

Converts between BCD and binary. Used internally also as subroutines for other functions.

04,09 BLNG? Buffer Length Finder W&W GmbH, RAMBOX ROM

Input: Buffer id# in X

Output: Length of buffer in X

Returns the length in registers of the buffer which id# is provided in X. Buffers are created
by different modules (CCD, Advantage, Plotter, etc) for temporary or permanent data
storage, and it’s beyond the scope of this manual to provide further details on their creation
and properties. The following table (necessarily incomplete) lists some of the buffers known:

Buffer id#Buffer id# Module/EpromModule/Eprom ReasonReason

1 David Assembler MCODE Labels already existing

2 David Assembler MCODE Labels referred to

3 Eramco RSU-1B ASCII file pointers

4 Eramco RSU-1A Data File Pointers

5 CCD Module, Advantage Seed, Word Size, Matrix Name

6 Extended IL (Skwid) Accessory ID of current device

7 Extended IL (Skwid) Print Cols, number & width

10 Time Module Alarms information

11 Plotter Module Data and barcode parameters

12 IL Development, CMT-200 IL buffer and monitoring

13 CMT-300 Status Info

14 Advantage INTEG & SOLVE scratch

15* Mainframe Key Assignments

 *) KA area isn’t really a buffer.

04,10 BUF>R Buffer to Register Ángel Martin, Toolbox.rom

Input: ?

Output: ?

Saves Buffer to register.

 XROM XROM NAME NAME SHORT DESCRIPTION SHORT DESCRIPTION SOURCE SOURCE

04,11 CALLXM Call program in EM Ross Wentworth, PPCJ,V12N3 p48

Input: N/A

Output: N/A

Transfers program execution to a program in Extended Memory which global label name is
stored in Alpha. The program can be anywhere in EM, but its entire length must be contained
within a single XM module (or the XM included in the XF/M module). All GTO’s must also be
precompiled before hand, or the execution will fail.

04,12 CHKROM Check ROM HP Co., HP-IL Devel ROM

Input: N/A

Output: N/A

This function tests the ROM with XROM number in X, to verify whether the value of its
checksum word is correct. Input value is the XROM number, and the result is a message with
the words “OK” or “BAD”. The ROM id# is also shown while performing the calculation. (Sum
of all word values, MOD 256).

04,13 CLEM Clear EM Hakan Thorngren, PPC,JV13N2 p14

Input: N/A

Output: N/A

Clears ALL Extended Memory.

04,14 CLMM Clear Main Memory Ángel Martin, Toolbox.rom

Input: N/A

Output: N/A

Clears ALL of Main Memory.

04,15 CSST Continuous SST Phi Trinh, PPCJ,V9N7 p49

Input: N/A

Output: N/A

Sequentially displays the program steps of the program pointed at by the Program Counter
(PC). It’s equivalent to using the SST key multiple times, and thus its name.

The delay between lines shown can be adjusted by pressing any keyboard key, see the
original source for further details. To use it, position first the PC (Program Counter) at the
target location (using GTO or similar).

04,16 CUR? Curtain location finder Ángel Martin, Toolbox.rom

Input: N/A

Output: Curtain address in X (NNN), curtain address in Aplha (hex)

Returns the absolute address of the curtain (separation between program and data
registers).

The general equation is:

Total Registers = Data Regs + Program Regs,

Where: Total Regs=512 on the CV and CX models.

 XROM XROM NAME NAME SHORT DESCRIPTION SHORT DESCRIPTION SOURCE SOURCE

04,17 FDATA Function Data Klaus Huppertz, Prisma, Jan-90

Input: Function name in Alpha (prompt)

Output: FAT address and XROM value in Alpha

Shows the FAT address and XROM value (the one used for key assignments) of the function
input into the function’s Alpha prompt. It works equally for mainframe functions, User Code
programs in RAM, and MCODE functions in ROM.

Despite being an Alpha prompt function when invoked from the keyboard, FDATA is also
programmable: when in a program, the function name will be taken from the Alpha register!

04,18 FINDB Find Buffer Ángel Martin, Toolbox.rom

Input: ?

Output: ?

Finds Buffer.

04,19 FLNG? Disk File Length Unknown, MMEPROM

Input: N/A

Output: Length of mass storage file in X

Returns to X the length in registers of the (primary) mass storage file which name is
specified in Alpha. If no HP-IL is present on the system an error message will be shown.

04,20 FREG? Free Registers Finder Ken Emery, MCODE for beginners

Input: N/A

Output: Number of free registers in X

Returns to X the number of available (free) program registers in Main Memory. No input
value is required.

04,21 GETN Restore main memory Geir Isene, ICEBOX.ROM

Input: N/A

Output: N/A (“NONEXISTENT” if HEPAX data file “N” is not present)

Restores main memory from a file named “N” in HEPAX ram (must be created manually or by
the function SAVEN first). This function calls HGETA with the parameter “N” in Alpha.

04,22 GROM Goto ROM address Geir Isene, ICEBOX.ROM

Input: ROM address in NNN in X

Output: N/A

Jumps directly to the ROM address given in X (in NNN). DO NOT USE THIS unless you know
what you are doing.

This is a dangerously powerful function.

04,23 HEX>NNN Code Ken Emery, MCODE for beginners

Input: HEX value in Alpha

Output: NNN in X

This ia an improved version of the well-known CODE functions. The function is well-known
and has been around for a long time, included already in the PPC ROM (routine “HN”).

04,24 HEX>VSM Hex to VASM Oct Ken Emery, MCODE for beginners

Input: HEX value in Alpha

Output: VASM octal address

Routine to convert ROM address from HEX to the VASM Octal format used by HP. Input fields
are automatically separated by the function, and the keyboard only admits numbers
appropriate of the origin base (Hex or Octal).

 XROM XROM NAME NAME SHORT DESCRIPTION SHORT DESCRIPTION SOURCE SOURCE

04,25 HEXIN Hex Input Hakan Thorgren, PPCJ,V13N4 p13

Input: N/A

Output: NNN in X

Direct entry of Non-normalized numbers using its byte’s HEX codes. Similar to CODE or
HEX>NNN but interactive. HEXIN allows for a prompt message, if the alpha register contains
any string before the function is executed. Enables only the keys of the HEX keyboard (0-9
and A-F).

04,26 HXENTRY Hex Entry Ken Emery, MCODE for beginners

Input: N/A

Output: NNN in X, HEX value in Alpha

Direct entry of Non-normalized numbers using its byte’s HEX codes. Similar to CODE or
HEX>NNN but interactive. HXENTRY stores the input code into Alpha as well as returning the
NNN into X. Enables only the keys of the HEX keyboard (0-9 and A-F).

04,27 KACLR Clear Key Assignments HaJo David. PPCJ,V12N4 p24

Input: OK or OKALL in Alpha

Output: N/A

Clears all key assignments presently configured on the USER keyboard. Very similar to
CLKEYS function of the X-Functions module, but with added functionality: it requires the
literal string “OK” in the alpha register to perform the clearing. If the string “OKALL” is found,
then not only the KA registers but all the buffers will be cleared as well.

04,28 KALNG? A Registers size finder W&W GmbH, RAMBOX ROM

Input: N/A

Output: Length of Key Assignment area in X

Returns the length in registers of the Key Assignment area in RAM memory. (Note that this
cannot be done with BLNG? above, using 15 in X).

04,29 KAPCK Pack Key Assignments HaJo David, PPCJ,V12N4 p24

Input: N/A

Output: N/A

Packs the key assignments registers area of the 41 RAM memory. This can recover some
registers held up for key assignments by the calculator but not being used, which frequently
occurs after de-assigning keys.

04,30 LKAOFF Suspends Local KA Ross Cooling, PPCJ,V13N2 p37

Input: N/A

Output: N/A

LKAOFF Suspends the local key assignment, that is those in the first two rows un-shifted (A-
J), plus the first row shifted (a-e). This permits the usage of these keys as local labels within a
program, and thus not being overwritten by their global assignment.

04,31 LKAON Reactivates Local KA Ross Cooling, PPCJ,V13N2 p37

Input: N/A

Output: N/A

LKAON reactivates the Key assignments suspended by LKAOFF. These two functions should
be used together to temporarily suspend and then reactivate the local assignments.

 XROM XROM NAME NAME SHORT DESCRIPTION SHORT DESCRIPTION SOURCE SOURCE

04,32 MAKEB Make Buffer Ángel Martin, Toolbox.rom

Input: ?

Output: ?

?

04,33 MNFR Mainframe Function Clifford Stern, PPCJ,V12N3 p37

Input: Three digit representative of mainframe function (prompt)

Output: N/A

This function prompts for a three-digit input representative of any mainframe function, as per
the codes contained in the HEX Byte tables. Note that some values will invoke strange
synthetic routines.

The following table shows some of the functions and their corresponding suffixes. Note how
MFN conveniently accesses many of the non-programmable mainframe functions.

Suffix MFN Function

000 CAT _

006 SIZE _ _ _

002 DEL _ _ _

003 CLP _

010 PACK

015 ASN _

04,34 N100 Write h100 to addr. 4100 Geir Isene, ICEBOX.ROM

Input: N/A

Output: N/A

Write the hex value of “100” into address 4100. This is only useful if you have a NoV-32 or a
NoV-64 module by Diego Diaz (see his web site http://www.clonix41.org for more information
on these modules.

For the NoV-32, this function will activate HEPAX RAM bank #0.

For the NoV-64, this function will activate ROM Bank #1 and HEPAX RAM bank #0.

ICEBOX.ROM will naturally reside in ROM Bank #1 of a NoV-64. This is why I have not
included any N20X functions as that would switch the pointer away from ICEBOX.ROM in the
middle of the function (sawing off the branch that it sits on :)

04,35 N101 Write h101 to addr. 4100 Geir Isene, ICEBOX.ROM

Input: N/A

Output: N/A

Write the hex value of “100” into address 4100. This is only useful if you have a NoV-32 or a
NoV-64 module.

For the NoV-32, this function will activate HEPAX RAM bank #1.

For the NoV-64, this function will activate ROM Bank #1 and HEPAX RAM bank #1.

See N100 for more information.

http://www.clonix41.org/

 XROM XROM NAME NAME SHORT DESCRIPTION SHORT DESCRIPTION SOURCE SOURCE

04,36 N102 Write h102 to addr. 4100 Geir Isene, ICEBOX.ROM

Input: N/A

Output: N/A

Write the hex value of “102” into address 4100. This is only useful if you have a NoV-64
module. This function will activate ROM Bank #1 and HEPAX RAM bank #2.

See N100 for more information.

04,37 N103 Write h103 to addr. 4100 Geir Isene, ICEBOX.ROM

Input: N/A

Output: N/A

Write the hex value of “103” into address 4100. This is only useful if you have a NoV-64
module. This function will activate ROM Bank #1 and HEPAX RAM bank #3.

See N100 for more information.

04,38 N200 Write h200 to addr. 4100 Geir Isene, ICEBOX.ROM

Input: N/A

Output: N/A

Write the hex value of “200” into address 4100. This is only useful if you have a NoV-64
module. This function will activate ROM Bank #2 and HEPAX RAM bank #0.

See N100 for more information.

04,39 N201 Write h201 to addr. 4100 Geir Isene, ICEBOX.ROM

Input: N/A

Output: N/A

Write the hex value of “201” into address 4100. This is only useful if you have a NoV-64
module. This function will activate ROM Bank #2 and HEPAX RAM bank #1.

See N100 for more information.

04,40 N202 Write h202 to addr. 4100 Geir Isene, ICEBOX.ROM

Input: N/A

Output: N/A

Write the hex value of “202” into address 4100. This is only useful if you have a NoV-64
module. This function will activate ROM Bank #2 and HEPAX RAM bank #2.

See N100 for more information.

04,41 N203 Write h203 to addr. 4100 Geir Isene, ICEBOX.ROM

Input: N/A

Output: N/A

Write the hex value of “203” into address 4100. This is only useful if you have a NoV-64
module. This function will activate ROM Bank #2 and HEPAX RAM bank #3.

See N100 for more information.

04,42 NBS NoV Block Switch Geir Isene, ICEBOX.ROM

Input NS prompts for the NoV bank number (100-103,200-203 – see N100)

Output: N/A (“DATA ERROR” if input value is not in the ranges 000-003, 100-103,200-203.
“NON EXISTENCE” if HGETA is not found, “CALC OFF” if ROM block is switched)

This function switches the block to the configuration you enter at the prompt and then
restores Main Memory to the file named “N” in the new HEPAX RAM block. If you switch the
ROM block (the first of the three digits you enter at the prompt is different than the current
value at the address 4100), it gives a brief message, “CALC OFF” to remind you that you
must turn the calc off and on again for the ROM block switch to take effect.

 XROM XROM NAME NAME SHORT DESCRIPTION SHORT DESCRIPTION SOURCE SOURCE

04,43 NX Write X to addr. 4100 Geir Isene, ICEBOX.ROM

Input: Number (000, 001, 002, 003, 100, 101, 102, 103, 200, 201, 202 or 203) in X

Output: N/A

Write the value in X into address 4100. See N100 for more information.

04,44 N? Write addr. In 4100 to X Geir Isene, ICEBOX.ROM

Input: N/A

Output: Number (100, 101, 102, 103, 200, 201, 202 or 203) in X

Write the value of address 4100 to X. See N100 for more information.

04,45 NNN>HEX Decode Clifford Stern, MCODE for beg.

Input: NNN in X

Output: HEX value in Alpha

This ia an improved version of the well-known DECODE functions. The function is well-known
and has been around for a long time, included already in the PPC ROM (routine “NH”).

NNN>HEX will decode the NNN in X into the HEX code in Alpha, and (contrary to other
implementations of this function) without leading zeros (i.e. no left-padding).

04,46 NRCLX Recall Ken Emery, MCODE for beginners

Input: Register number in X

Output: Register content in X

The content of register N (given in X) is returned to X.

04,47 OSREV? Show OS revision Ángel Martin, Toolbox.rom

Input: N/A

Output: OS rev#

Shows HP-41 Operating System revision number.

04,48 PGTRAIL ? Ángel Martin, Toolbox.rom

Input: ?

Output: ?

?

04,49 POPADR Pop Address Hakan Thorngren, Toolbox.rom

Input: N/A

Output: N/A

Pops last return address from return stack

04,50 R>BUF Register to Buffer Ángel Martin, Toolbox.rom

Input: ?

Output: ?

Saves registers to Buffer.

 XROM XROM NAME NAME SHORT DESCRIPTION SHORT DESCRIPTION SOURCE SOURCE

04,51 RAMEDIT Ram Editor Hakan Thorgren, PPCJ V13 N4 p26

Input: Start address in decimal in X or address in NNN in X or from PC (Program Counter)

Output: N/A

This function sets the calculator in RAM Editor mode. When invoked from the keyboard, it can
take the start absolute address either from the decimal value stored in X, or from a right-
justified NNN with the binary address in it. When invoked from a program it takes it from the
current position of the program counter.

In either case, the display shows the register and nybble being edited, as well as the
contents of the complete register. The cursor can be moved to the left and right with the
USER and PRGM keys respectively, and the current digit where it’s positioned on will blink on
the display.

Direct editing is possible using the redefined hex keyboard. Continuing to scroll in either
direction shifts the cursor to the beginning or end of the register (indicated with a short
warning tone), but doesn’t move up or down to the adjacent registers. Use the “+” and “–“
keys to actually move to the following or previous registers.

The input sequence terminates by pressing R/S or the back arrow key, which exits the RAM
editing mode.

04,52 RAND Random number generator Ken Emery, MCODE for beginners

Input: Seed in X (0 - 1)

Output: Random number (0 - 1) in X

Simple random number generator. For a 41CX or C/CV with Time module use the following
program to generate the first seed, then use RAND for fast random numbers:

01 LBL "RNG" 07 PI

02 DATE 08 MOD

03 TIME 09 LN1+X

04 + 10 R-D

05 1 E49 11 FRC

06 * 12 END

04,53 ROMCAT ROM CATalog J.D.Dodin, Au Fond de la HP-41

Input: XROM number in X

Output: Catalog listing

Lists the functions on the module which XROM number is in X. Once the module is finished,
the listing continues with all the other modules plugged in on pages with higher number than
the first one.

04,54 RROM Read ROM Geir Isene, ICEBOX.ROM

Input: ROM address in X (NNN)

Output: ROM address word in Y (NNN)

Takes an address in X (in NNN format - use HEX>NNN to take an address in ALPHA and
convert it to NNN format in X) and returns the NNN value from that address in Y (use
NNN>HEX to get the hex value in ALPHA).

The address in the X register is incremented by one (makes it easy to view the ROM
instruction-by-instruction).

 XROM XROM NAME NAME SHORT DESCRIPTION SHORT DESCRIPTION SOURCE SOURCE

04,55 SAVEN Save main memory Geir Isene, ICEBOX.ROM

Input: N/A

Output: N/A (“NONEXISTENT” if HEPAX data file “N” is not present)

Saves main memory from a file named “N” in HEPAX ram. This function calls HSAVEA with
the parameter “N” in Alpha.

04,56 SHOWB Show Buffer Ángel Martin, Toolbox.rom

Input: ?

Output: ?

?

04,57 SROM Search ROM Geir Isene, ICEBOX.ROM

Input: ROM address (NNN) in X, WORD to search for in Y (NNN)

Output: ROM address where WORD is found in Y (or end of page)

Executing SROM will start the search immediately after the address you entered into X. It will
return the address into X where it finds the first occurrence of the search word. You can then
execute SROM again to find the next occurrence etc.

SROM will stop when it reaches the end of the block and return the start address of the next
block (by again executing SROM, it will continue into the next block).

04,58 ST<>R Swap Stack with Registers Geir Isene, ICEBOX.ROM

Input: Content of Stack (including Last X), flags determine target register addresses

Output: Content in target registers swapped to Stack

This function swaps the content of the Stack registers with five registers in RAM memory (the
normal register). You can tell the function which registers you want as target register by
setting flags 0-3. Please refer to the function X<>F to learn what the combinations of flags
means.

Example: Setting flags 2 and 3 will make register 12 the starting register for swapping. The
five register that is swapped with Stack are always consecutive (so in the example above,
register 12-16 will be used).

04,59 SUMROM Sum ROM George Ioannou, DF V3 N1 p10

Input: Page address in X

Output: ROM checksum (written into address FFF of page)

Calculates the ROM Checksum and writes its value into the last word of the page being
summed. Prompting function requests the page address (8 to F), to be input on the blinking
field.

04,60 VSM>HEX VASM Oct to HEX Ken Emery, MCODE for beginners

Input: 0

Output: 0

Routine to convert ROM address from the VASM Octal format used by HP to HEX. Input fields
are automatically separated by the function, and the keyboard only admits numbers
appropriate of the origin base (Hex or Octal).

04,61 WROM Write ROM Geir Isene, ICEBOX.ROM

Input: ROM address (NNN) in X, WORD to write in Y (NNN)

Output: N/A

Takes an address in X and the value to write to that address in Y (both in NNN). This can only
be used to write to EPROM RAM.

This makes it possible to write 101h into the address 4100 to make the second HEPAX RAM
block active.

 XROM XROM NAME NAME SHORT DESCRIPTION SHORT DESCRIPTION SOURCE SOURCE

04,62 XQ>XR XEQ to XROM W&W GmbH, RAMBOX ROM

Input: User code program name in Alpha

Output: N/A

For a user code program which name is in Alpha, this function changes all the global XEQ
lines calling other programs in the q-RAM space, converting them into their XROM
equivalent.

Use it once the function allocation and FAT is completed, as it will refer to the XROM and
function numbers, instead to performing a label search based on the actual name. Execution
of the program will be much faster, as the mentioned search will be avoided.

04,63 XROM XEQ ROM Clifford Stern, PPCJ,V12N3 p37

Input: XROM number (prompt)

Output: N/A

A very special prompting function. Allows direct entry of any function included in a plug-in
module, by introducing its XROM number first and then the function number.

This allows access to ROM header functions, such us “–Sandbox 3d”, (XROM 08,00). Note
that while XROM is not programmable, the function called can be entered into a program,
thus it isn’t necessary that the ROM be present to introduce its corresponding functions.

ICEBOX.ROM home page: http://www.isene.com/artweb.cgi?hp-41

If you want other functions in the ICEBOX.ROM, please e-mail me at g@isene.com and ask

for functionality – your wish may come true :-)

Geir Isene

Oslo, 2010-01-12

mailto:g@isene.com
http://www.isene.com/artweb.cgi?hp-41

