PEC TECHNICAL WOTES 16

ON ANNOUNCEMENTS AND OTHER THINGS ABOUT ICODE

felow iz ame of ocur eccasional annoencesments/advertisements - this time
af a superh set of functions. If Dear Reader is wanting to cake an
intelligent interese (why DO interests have to be inteliigenc? Kho
would, or could take an UNintelligent interest? What on earth fs the
implied contrast invelved???) Iin machine language programming, has
g failr command of synchetics, but g nor yet Firrancially egquipped to
plunge into the fulld thing, Lut may think that EPRON's with his own
ctgtamised favourite programs would be a good thing, and thinks a Jim
Box of some kind would ke worth ic, then: dering those long Winter
Nights, instead of playing the Gramophonae(Phonograph/Victrolal . .)
he may Invast in an ICODE EPROM set and approach the mastery of Halmac=-
ronfan with a Linguaphone manual and dle. (I am reliably vold thac
such stuff as this is 15 eventuwally intelligible. One of .ED.'s
5,000 indulgences, I guess,) Bue the real purpose with which I sterted
te type all this was to remark that after the following kit of blatency
there ¥g the opening section of Pawl's Manual (mot yet automated) for
the ICODE EPROM set = the 'Brief Overview'. After that puff cames The
Real Thing. Laid .ED,
ic

THE I-CODE EFROM SET 15 HOW AVAILABLE FROM MELBOURNE

The EPROM sct comprises 101 funcclons which enable you co perform
operacions on 2 scratch reglisters (maintained and managed by che
EPROM as mini programs) including:

1. Bir or nybble rotations and shifts of data

2. Decimal or hexadecimal operatlens on Selected fields within the
gerateh reglscers

3, Storing or recalling of bytes to or from RAM or ROM {including
emulaced ROM-- ROME or now called XRAM)

4, WVirtually all microcede tasks can now be performed with I-CODE
routines, and you have the advantage of single-scepping, editing
inserting ecc. Furthermore, only an EFROM box is required- XRAM or
ROME i% noC necessary to cnable you to perfor= tasks normally
needing mlerocode.

5. Most sytem data is instancly retrievable inte the scratch registers
epg currént slze, pumber of key assignment registers used, nusber of
free 10 reglsters, locatlon of curtain and (END. etc. ete.

fi. Commenda are supplied which permitc exchanges with and kit level
manipulation of system and user flags.

7. Many program polnter control funcilons are provided (eg Eor
ereation of Indefinite numbers of subroutinme calls)

f. Hany, meny more utility functions eg clear alarms, clear selected
user reglscers, CAT 2 beglonlng at a selecoed KROH number} ecec. etc.

0. Huleiple scratch registers can exist, and they can be exchanged with
the XYZT or Alpha regiscers cte.

A manun] describing all of the commands (18 pages) is supplied with che
EPROM sec, and 17 pages of applicarlon rovcines are included te stare
you off.

Tha EFROM set costa 535 Avscralian ineluding post and packing. Pleasc
only send cheques in Australlan currency tat Paul Coaper.®Overscas
persenel cheques vafortunately cannot be casbed here.

* €20 back cover for address,

23

24

FPPC TECANICAL NOTES 16

SREEF OVERVIEW OF T-CODE AND THE 1CODE EFROM SET

Lf pne was given the task of permitting the uwser to operate machine
code like instructions without having te write michine code routines
{and therefore not requiring anm MLDL or MLI), one might proceed to
epulate the meching code functions by o uuriety af funetions which ecould
be called up in a sequence to perform che required task from within a uwser
code progrém. Thus one would only have to have a ROM or EFROM containing
the required functions and the esulation would work (altheugh it would be
glover than actually working in machine code). The above strategy has the
difficuley ehat there are many many machine code instruetions and m 4K
EFROH can only have 64 dircctly callable funetions. This mesns cthact only
G functions could be coded for, and ever so, parameters would have to
be pessed to many of these functions (eg RCR 1, RCR 7, RSHFA S&X, RSHFA M
ecc.). This leads to the second complexity: 4K 5 not a lot of room Lo code
in such fupctions. I am sure, however, that it could be done, and in fact
1 am currently working on this approach for a sccond set of EPROMs (ICODE 2).

Instead of teking & direct emulation approach, I decided to perform a
partial emulacion of the CPU by providing scratch replsters for bie, byre
and whole register manipulation of daca. I chen provided a pivotal Function
({ICODE) which can be used to access & furcher 33 functions wia parsmeters
passed to it (from the keyboard or from program memoey). These functions
would not be direct CPU functions, but would instead perform mini tasks
which can be ineluded into larger programs. For example, functions to recurn
thi number of key assignment registers used, the current size, the curtain
address ece. are provided. Alchough suech functions can be performed by
syntherics, and some have been alrendy available in machine code in ocher
ROMs/ EFROMs, this set of functions is CONSISTENT with the vse of the scratch
replarers provided, and de aot impedeé the operation of ANY normal or synthecic
instructions in a uwser program. Thus, this combination of CRU emulation
ingtructions and weility functions i5 known as I-CODE because they ara
intermediate in speed and wcility berween machine code and vser code.

It is true cthat many of che tasks vhich could be writcen by an I-CODE
program (see appendix) could be coded in machine code, BUT that would
require :

1. An MLDL or MLI contalning emulaced ROM so that machine code
rovcines can be written to RAM in the deviea.

2. An intimate knowledge of how machine code works {eg how to set
up an F.A.T., how ta use the CPU registersa, flags ete.). Until
a machine code book comes out, chis knowledge is not gained
overnight by a beginner (I know that from blterer experience).

3. An assembler/dissassenbler is required £f one is not to go mad
uhile ceying to wrice machine code routines.

Even after all the above, machine code can HNOT be single stepped with
execuclon (not quite ctrue- I have written a machime code routine to do chis,
bue it is dEfffcult), and can not be easily ediced or alrered. Furthermore,
debugging is often difficult. Expericnce overcomes many of the Eorcgoing
points, but I-CODE overcomes most of thom wery simply:

With L[-CODE:
L. You need only have an EFROM box, as no simulated ROM Is required.

2. You eAn use as many scratch registers as you like for daca
aperatioas, or just {or addicions]l steroge (non-nermalfsing of

course) .

PFFC TECHNICAL NOTES §1&

3. You can debug, single-step and edit any progras containing
I-CODE functions, and unlike sytheties, ehis will never cause
improper operation of the caleulator.

While T-CODE may Fulfil some of the reguircments to be called a new
language for the caleulator, it may be helpful to regard it as an oxpanded
set of mutwally supporting functions. Thus I-CODE does not replace normal
user code or gythocles, buet it does add speed and poMEt Lo many programs
witlch would otherwise use cusbersome techniques in cheir operation. IE you
are fiemly entrenched inte writing machine code routines, then I-CODE may
not be for you. However, consider this: would you purchase a 4K EPROM set
centaining only certain progroms (¢g as per & machine code version of PPC
BOM), or would wou prefer to have a set of tools which you ean combine to
perform most tasks you would wish a machine code routlne tg do?

The rest of this manes] will deseribe the funccions of the I-CODE set,
and will discuss the creaclon and pperation of che scratch regieters. The
central ICODE functilon itself has beon described in detail in PPCTH & L6,
Finally, some application routines are provided merely to show the scope
of uses to which I-CODE could be put. T am sure chat people reading this
information will have many more imaginacive idens than che enes I have
pregented. Bar code is also included for theose programs.

feicicicicicicicicicicicicicivic

HICROBEE DRIVE TELLS HP=4lc ITS TRNERNOST SECRETS Seive dl
v fl: mmmemag
Time mow o rush owt For a quickie before Y I] p—

the main feature starts (I Would Marry You IF ———— k2 PR —mnne f

JCODE), There we find Nichael Thompsen blazing,

waving & strip of thermal paper. All agag at tha
latest marvels we areé about to have revealed to us,
wir hold cur breath as he speaks of 1.2 Mb drives
crashing about him, the RS 232 interface a2peaking
frow the Hierobee to the 41, the d4lc valiantly
trying to make sense of the flood of bytes Flowing
in, but sympathetically assisted by the kindly
Michael it eventwally produces, on the vary same
loop as that from which the R5232 told its all,
thig wveritable miracle of facsismiles of the
sereen of che Microbee, all prettified and
intelligibie ts all, *They sald it covld not he
dome,” sald Michael, *but hetween us this I5
now demonstrated to ke False,® Having so said, ke
placed an armlock on (ED,, forcing him to swear
to present it to all TN readers, waiting for such
& S5IGN for years. At the Right, then, Dear Reader
fvayour?), let thine eyess Feast. But don't ask
me how, ask Michael. If you don't have a printer
with your persenal cemputer, why - a {le might
prove just the thing. And new the bells are
ringing, the main Feature iz about to commence,
drap dead . 8D,
beecatbeecatboocatbeccatbeecatboocat

—-382k-Bries Frig
RESEMD LBIR...fL |
EZT-10 LEIH...Ek
ILFRTIE JBIM...6%
SIE-1R LBIM...ER
R3SENT LBIN___Ek i
HFILDEV1.EIH___bx
HLEFRKEH. BIH___Ek
SYSROnEC, BIN. __EX

EPRON .COM___2% |
H® [LHEV2. BN .6k ¢
FLOTER . BIH___Ek §
SYSRCHIF BIN___£k

ERAMCT L BIM___gk |
[CO0E .BIH__6k |
PLOTZR LEIH___6k 1

SYSRONZF.BIN___ &k
EdE SR T4k
ILEURHIE. BTH___£k
FPC/MELE. BIN___6t
[P __dE
EdT JBEE. A
ILEIBIH LETH.. &)
L8 BN LB
EFCHIE <BIN...ER

m=emmmme=dd Filey 4=
----- —32 Extents -

==34k-Evies Used

25

PFC TECMNICAL NOTES K16

TNTERMEDIATE CODE HAS LIFTOFF!ILI Faul Cooper ([9910)

Good news needs guick delivery - for this pathetic reason
{just thaught up an the sper of the momept) this very latest matarial
From Faul's hands has been inserted (using intspmediate coda = what
glse?} in the near start of this fssue of TN, It is later than other
material of his which is here, and will be in TMN17, but deserves
to Be First, Pawl and the Melbowene Chapter will ke smaking EPROM seots
af ICODE available fo a minimal sharge, and they will be available
in France = and through mest of Burcpe, From Jeap-Paniel Dadin. See
the announcement in this issue, For the rest, start thinking how to
exploit the pawer of Paul's oxcollent softwars, HWe will be publishing
many af the rowtires of ICODE in TN for Berious Students of The Art.
Watch these spaces. .ED.

icieiciciciciciclcicicicicicicicicicicicicicicicic

2he congeption of Intermediste Code was sppounced in THEL4 (pp.72=TE)
and & note mentioning minor revisions in the lmplementatlon was on
the foot of p.78. The earller version used status regiskters a and b
for scratch purpeses, though keeping Lhe progeam polinter undefiled.
£inee then, &5 a result of fasting ond profound meditation {ataring
at the HP-4lc navel), it was decided to use registers in an ICODE
created program file st the end el program memory. The deliberatlions
behind this will surface elzewhere.

THE USE OF SCRATCH RABGISTERS BY INTERMEDIATE CODE ROUTINES

Wearly all of the I-gode routines raquire consultation of a
specinl pair of regisfers designated Sa (serateh reg a) and

Sh (scratch reg b) respectively. These sorateh reglisters are
creaced just below cthe permanent END, but are configured wich

a header label and a new permanent END with a newly constructed
CAT L linkage. Thus each of the routines can simply examipe the
reglsters above the permanant END to see if they hold the correct
header LBL (consisting of two ¢nkeyable chars = hex O1). If oot
then either the scrateh registers de not gxise, or the user has
added in 8 new program afrer the last ERD [thus cutting off
ascepgs to the seracches). The I-code routines will crenté new
seratch registers Lf nppropriate, of will indicate 'HONERISTENT®
if they require che contents of the scratch reglsters for their
operacion. In the latter case, Che user can scill recover the
previous scrarch contence by making use of two urilicy routines.
The first does che equivalent of & manuval oroT Z¥and places the
program pointer at the firgt set of seratch regiscers found by
climbing the global chain. A gecond weility routine may then e
used te copy che contents of this set of scratches to 4 new Bot
gynchesized just below the new pefmancnt EKD, Of course the
registers may be duplicated, erased, swapped and of course
decoded and examined at any time. Many of the 1-code routines
allow direct entry of data te ov from the scatus Tegisters and/for
wier Tegisters, as well as allowing many operations Lo be
performad on the data within the reglacers.

In more detail, the seracch registers are gonfigured as shown
be low:

o Tot b
e TEE Fie
5b

Sa
JEND <= Wik el

FrC TECHNICAL NOTES #16 a7

Within the scrateh registers, wvarious Eields have been specified
to aliow more convenlent use of the contencs:

Byte & B 3 4 3 2 1L a
Mybble & 13 12 11 1 9 E 7 B54 izlo
Sh field Patr 1 Potr 2 Flags Temp byte Loadable Address Temp store
. ELOTE byte
M # 3 1 4]

Use: +f= Patr Carry DecfMex

The Sa regliter 8 very simple and i basically wsed to hold the operand
upon which the operation is to be performed.

I will describe now the varlcus Eields within 5Sb:

Bybble 13; This aybble stercg the current walue of peinter 1.
For example 1f poilnter 1 was currently pointing teo
nybble B of Sa, chen nybble 13 of 5b would hold 8.
Although this nybble can hold values between O and
15, walues 14 and 15 have ne relevence for operatiens
on 54, as S5a holds only 14 nybbles. {(§13 to §g)

Hybble 12: This nybble is as Eor nybble 13 except thar it refers
to poloter 2,

Hybble 1Ll: This nybble is further subdivided into the four
component bica. Bit 3 is set if the operacions are
roquited fo be SUBTRACTIVE. It is clear Lf chey are
o be ADDITIVE. Bit 2 is set if pointer I is selected
and is clear if poincer 1 is selected. The seleccion
of accive pointers is important for the I-code operations
which Incresent or decrement the pointers. Blt 1 is set
if a preceding operacion resulced Ln an arichmetic
opverflow, or if a test was true. It is otherwise clear,
Hore that it is ONLY cleared by arithaetic or restc
operationg, of by direct manipulation of 5b nybble 11,
Bit ¥ i= sct if decimal mode is selected, clear LE hex.

Hybbles 10 & 9: These two nybbles provide a convenlent storage
for two nybbles. Varlous commands have bheen provided
which enable these aybbles to be exchanged with ocher
5b register nybbles,

Hybbles 8 & 7: These twe nybbles congtitute a major operating field
within the St regiscer. These anybbles (byte 1-4) can be
loaded from & running program, can be arichmecically
operated on (in HEX or Decimal) and can be exchanged or
added te other bytes within the 54 veglster. Nybble 7 L=
#lso used as part of the address field for specifying
4 nybble addreses {(eg ROM addresses). See also below,

Hybbles 6, 5 & &: These three nybblea are the addreses field of 5b reg.
They may be ocperated on, exchanged with regiscer Sa flelds
or may be grovped with nybble 7 ro spaclfy &4 nybble
nddresses. The use of this field allows BAM addresses to be
gpeclflod and ROM words co be wrltcen te an MLI or
rerrleved and ploced Linto Sa reglster.

28

PPC TECHNICAL WUTES #I6

Mybhles 3, 2, 1 & 0: These nybbles are basienlly used for temporacy
stovage of various byies and nybbles, and cthe contents
of this field may be exchanged with many other Sb [ields.
These nybbles are also uwsed to permic tescs based on the

bytes present in nybbles 4 to 7 to be performed (see below).

1-CODE commands

Hame Function No. Byceas

S —————— A L L L L

Hegister Operations

-5 Places the contencs of the ¥ reg inte Sa, and the ¥

reg inte Sb. Creaces 5a and 5b if not present. 22
5-XY Places the 5b reg te the Y reg, and 5a to X reg.

Gives "MONEXISTENT' Ef Sa and 5b do not exisc. 24

KYCrE Supps ¥ reg with Sb and X reg with Sa. Glves
'WOMEXISTEMT' if Sa and Sb do not exist. 33

ARGTH Flaces the X reg into S5a. Creares 53 and Sb if
they do nor exist. 1%

ARGOUT Places the Sa contents into the X reg and Lifes
the staek if enabled. Gives 'NONEXISTENT' Ef Sa
and 5k do not exist. 15

ARGEX Swaps the X reg contents with Sa. Gives
'ROMEXISTENT' if Sa and 5b do not exist, 20

GET Gets the coatents of the register Epnciflcd by
nybkles &,5 and & of Sb, and loads into 5a. Gives
"HONEXISTENT' if that register does not exisrc, or
if Sa and Sb were not found. 50

PUT Places the contents of the Sa register lnco che
register spocified by aybbles 4,5 and & of Sb.
Gives "HOMEXISTEWT' 1f 5Sm and 5b do not exlsc, or
if che specliied regiscer doeos not cxist. an

EXAE Swap Sp and 5b reglster contents. Give 'HONEXISTENT
if Sa ond 3b do not exisc. 25

Figld exchanges

SWPADR Swap Sb nybbles 4-7 with 5b 0-3. Gives 'HONENISTENT'
if 5a and 5b do nocr exist. 23

SHPTHE Swap 5b nybbles 7-10 wich Sb 0-3. Gives 'HONEXISTENT'
if Sa and 5b do not exisc. 23

SHPTR Swap 5B nybbles 7 and B with 5% aybbles 12 and 13.
This enables the painters ta be loaded wvia the
loadable byte (nybbles 7 and £} in one or two steps.
'ROMEXISTENT' 0 Sa ond Sh ave not [ound.

L iy i i o) B e e e e P S o r e

Hame

SWPRYT

SWPFLG

SWEEPC

PPC TECHNICAL NOTES §l& 29

Function Ho. Bytes

5

Swap Sh oybblies 7 and 8 with 9 and 10. Pravides
convenient storage for a byce which has been loadaed

lnco the 5b register. "HOMEXISTENT' if Sa and Sh are

nok present. 20

Swap 5b nybkble 9 wich che 5b flag nybble 11, Allous
the flag scecuses to be modified or examined wia

byee operatlons. 24

Swap nybbles 9, 10, 12, 13 af Sh with nybbles
1-7. Provides a means of storage for intermediate
caloulations based on the address fields (4-7, and
F-3). Gives "NONEXISTEMT' if Sa and Sb da nat exist. 29

Field exchanges between registers

EXFLG

CPUFLG

Exchange vger flags 0-7 with the bits in nybbles o

and I3 of Sb. Enables bir level munipelacion on

nybbles ¥ and 8. Also provides convenient storage

and retrieval of vser flags without using user
registera. Glves "MONEXISTENT' if 58 2nd 5b do not

exlaE. a5

Recalls or scores the status of the bits in 5b nybbles 0-3

into ot from the internal CPU Elags 0-13. If 5b is in einus

mode (blc 3 of Sb nybble 11 set), then CPUFLG sets bits 0-13

of Sk nybbles 0-3 as per che CPU flaps. Theze Flags control
PRIVATE statws, stack enable, program runming in ROM etc.

If che 5b regiscer is inm PLUS mode (bit 3 of nybble 11 clear),
then CPUFLG cakes the bits 0-13 of 5b nybkles 0= as the new

CPU flag sectings. After secting che flags, it ALSO dees the
following task: che CPU A regilarer is leaded with the contents
found in the S5a register, the CPU C register 1s loaded from the
A register, the CPU B repister is loaded from the Y reglster, and
CPU M and M reglsters are leaded from cthe £ and T regiscers
reapectively. Furthermore, the nybbles loaded into the 5b 4-7

are treaced as & ROM mddresp, and 8 machine codé jump is made

to thar address. Thus CPUFLG (in PLUS mode) ecan Be uged to branch
to any degired mainframe or plug-in ROM address, but you can

Jump there after having sec-up the regquired CPU registers and flags.

If you just wanted eo alter the status of che CPU flags, and
you don't want to perform a soinframe entry, then the best plan
is to place a harmless mainframe address inte oybbies &-7 of Sh
(see D-H below for one wvoy to do this). An exazple might be the
mainfra=e standby polling routine, Obvicusly CPUFLG s best used
with care after consulting the HOMAS liscinps. Using i, you
could (for example} branch co the XASH entry point te enable you
toe perform synchetle key assignments with machine-code speed.
Obvicusly the keycode byres ere, would have te be ger wp into
the required sctachk and S8 reglscters prior to the call e CPUFLG,
When veed with care, CPUFLG is one of the most pewerfull I-CODE
routines.

30

PPC TECHNICAL NOTES W16

Hame Funece ion Hao. ll:,ltng

EXXNYE Exchange 5b nybbles G-& with Sa 0-2. This f8 useful
to lpad or wnload the address [leld of the Sb Teg.
Gives 'NOMEXISTENT' if Sa nad 5b not Found. 25

EXBYTS Exchanges Sb nybbles &4-7 with 5a 0-3, As fer EXNYD
but accs on & further nybble. Useful for loading
addresses for operations of HOM addresses. 2B

EXADR Exehanges Sb nybbles 0-3 wich Sa 0-3. Allows the
temporary storage field of the Sb reg to be loaded
or unloaded with o 4 aybble address (eg for a
compare of arithmecic cperation). Gives "NOWEXISTENT'
if Se and 5b were not found. 25

FTA<YE Exchanges 5b nybbles 7 and 8 wich the oybbles pointed
to in the Sa repister by the currently selecced
pointer. Exchanges at the peinter and peinter + L
position. Gives 'HONEXLISTENT' if Sa and 5b do not

exist. 41
Polnter operations
SLET 1 Clears bit 2 in nybble 11 of 5b register, zo that

pointer 1 is selected. Givas 'HONEXISTERT' if Sa and

5b nor found. 23
SLCT 2 Sers bit 2 in aybble 11 of Sb reg so that pointer 2

is selecced., Otherwise performs as SLCT L.]

SETP Ceep the salecred pointer to the value of the nybble
7 in the 5b regiscer. It does net check the input
range of the nybble 7, and does not alcer the gorry
{flag. Gives 'BONEXISTEWT' if Sa and Sb do not exiat. il

SWPTR See description given under field exchanges above.
This function alsa does not validate the pointer

walugs and does noc disturb che earry [lag. 19

PNTROF Cheeks the status of bit 3 in nybble L1 of 5b. If it is
clear, then ir increments the value of the currently
gelected pointer. If it is set, rhen it decrcments the
peinter value. In both cases, the pointer argument 1s
validated and ecannet excecd l3. The carry flag will be
set if a polnter operation tries to exceed this walue.
Gives "WOMEXISTENT' Lf S5a or 5% do not exisc. 56

CLREYF Clears the 5a register berween sclected polnters.
Gives 'NONEXISTENT' if Sa and 5b do not exist. 35

DECODA Decodes the Sa register between selected polnters
and appends the characters to the alpha register.
This (unction enubles you to decode enly the central
bytes of a register vithout having to rotate or Luncate

PEC TECHNICAL MOTES #l6 11

Hame Fupnction Ho. Byres

NECODA [continued)

the dara, It alse does not clear the alpha regiscer,
thug allowing more flexible use than the normal GECODES.
Gives 'HOMEXISTEWT' if 5a and Sb not Eound. i)

Shifr and rotace instruwetions

SHFA Shifrs che 5a register lefr or right one nybbkle. The
direction of shifeting will be rvight if bit 3 of nybble
11 of Sb is clear, and will be left if it is sec. This
is easy o remember: PLUS mode means RLIGHT, HINUS mode
means LEFT. Gives "HONEXISTENT' £f Sa and 5b not found. 71

SHFOF As above, except shifts a varlable number of byres
deterained |.1:.f the value found in n}rl:!'l:lEs T and B of 8hb. 36

SHFBIT As above, except shifcs left or right a wvariable nusber
of bits as deteemined by the value in nybbles 7 apnd 8
of Sh. 1]

B BYH Rotates the S5a vegister lefe or righe the nomber of bics
specified by nybbles 7 and 8 of 5b register. Direction
of rotatien is right if in "+" mode, and lefe if in '-'
mode. Gives 'NONEXISTEKT' if Sa and Sb are not found. 34

Jumps

HCEKIP Skips the next instruction in the uwser program if the
carry flag is clear. Clears the carry flag. Gives
"HOHEXISTENT' Lf S5a and 5b not found. 3

CSKIF As abowve, except skips 1f the carry flag is set (see
bit 1 of nybblie 11 in Sk}. 20

o

ROTA This belongs with the shifts and rotates abowe. lt rotaces
left of right the Sa register by one nybble only. Sec above

for how to set the direction of retation. 39
Laa ommand
LDB loads the following two charscters Iln program 157

memory A8 two nybbles to be placed into 5b nybbles

T and H. The characcers must follow che LDB

instruction as alpha characters, and must be in HEX.
LDE does the equivalent of a CODE on the twe chats,

but this operatien does not disturb the alpha register.
1f characters other than 0-9 and A-F folleow LOB, then
'DATA ERROR' will arige. Am example should make it clear:
LG

*EB

witl laad hex OB inte aybbles ¥ amd 8 of 5b reg. 1f you
single setep the program wich LDB in i, then che LD
instruction will avtomatically jump che [ollowing

alpha characters, thus preventing the argu=ent from

iz

BPC TECHNWICAL NOTES #16

Name

Functinn M, Bytes

XBYTE

FETCH

sTOW

CODA

disturbing the alpha regiseer. LDB in combination with
SWPFTR is a fast way of setting both polnters (eg for a
DECODA fnstruerion) . .LDB muse always be follewed by two chara.

Takes an arpuzent found in che X reElsLer and converca
the absolute value Into two hex nybbles which are then

loaded into cthe 5t nybbles 7 and &, Gives 'ALPHA DATA"

iF an 4lpha ateing 8 in the X reg. Gives '0UT OF RAKCE'

if a decimal walue greaster than 255 is in the X regiseer.
Creates the 5a and 5b registers if they are not found. 30

TE the Sb register is in HEX mode, then FETCH consulrs
the nybbhles 4-7 in the 5b reg.,and recalls the word at
the ROM addresgs specified by those nybbles. The word

is placed inte the nybbles 0-2 of che Sa repister afrer
firsc roracing the 5a register 3 nybbles lefc..Hybbles
L% and 12 of the Sa repister are thean replaced with

cthe HEY digicts 1 aad @, 5o that when the Sa register is
placed Ento a user regiscer, it will appear as an alpha
gtrins and will therefore not be normalized. Up co Four
ROH words may be recalled inco the Sa reglster before it
bocomes full. This operatien is made easier because
FETCH automatically imcrements the address in 5b nybbles
5-7.

If the Sb was in DEC mode (bit O of nybbkle L1 set) then
FETCH trents the nybbles 4-7 ol 5b as & BAM program
poincer. It recrieves the byte at that RAM location then
resets the progras polater ©o point to the next BAM byte.
The recrieved byte is placed into Sa nybbles 0 and L afeer
rotating the Sa register two nybbles left. As before, the
Sa reglster is then made into an alphs steing. Thus up co
& WAM byres may be vecalled wich FETCH before the Sa reg
ig full. The progras pointer may he placed into the Sb
regiscer nybbles 0-3 by a urilicy pregram described later., 70

This is & near inverse of FETCH. If the 5b regiscer is in
HEX mode, then che word in nybbles 0-2 of the Sap register
is writteén to an MLDL or MLI &t the ROM address in Sb
nybbles 4-7. The ROM address i{g incremenced, and the Sa
register is rotated 3 nybbles clght.

1f the 8b register was in DEC mode, then STOW places
the byte in the Sa reglster aybbles 0 and 1 into RAM atC
the locatien indicated by the program poincer at Sb aybbles
4=7. The program pointer is updaced to peint to the nexc
byte, and the Sn register is rotated two nybbles right. B8

Thia function performe a CODE on the alpha register, but
places the coded nybbles into the Sa register rather thon
the ¥ register. It crestes the Sa and Sb registera if they
2o not exise,

This function is diflerenc to the CODE in ASSEMBLER 3 in the
fallowing way! only the nusber of coded nybbles decived from
coding the ALFHA register are REPLACED with the nybbles in che

PPC TECKRNICAL NOTES Bl6

Heme Funetion

Ho., Bytes

CODR

YADR

e e O e i e e - S P

Continued

5a register. For example, if the Sa register contained:
ARCDEFOL234567 and the ALPHA register contained the chars:
9876, then afrer the CODA operatiom, the Sa veglater would be:

ABCDEFOL?39876. The ASSEMBLER 3 CODE function would hawe cleared
the Sa register, end chen entered the G876 nybbles, Thus CODA =ay
be vsed to selectively load the Sa register without losing
previous contents {especially when used in conjunccion with the
rorote and ahift commands), Hote chat leading nulls will not be
ipaded, and that a cleared ALPHA register will load nybble 0 of
Sa wirh HEX O, For example, Ef the ALPHA register held: D03876,
then the contents of the Sa reglster would still be as in che
example above, Thao is, the leading nulls are oot londed. Tao
enter leading nulls, you can use one of the other load commands,
ot you can preclear part af the S5a regiscer {see CLEYF). [CODE 01
(MEXKB) works as per CODA, but it funccions from the keyboard.

This function takes = decimal pumber from the X reglister, converts
it to HEX, then loads it into the address nybbles of Sb (4-6).
Thus & register location or part of a ROM address could be loaded
in one step with thls command. Maximes inpur aumber is 50495,

Arithmecic functions

5ET-

SET+

SETDC

SETI

CURTOP

ADDROP

BOTA

Zots bic 1 of nybbhle 11 in the §b register so that
gubsequent operations will be subcractive, and shift
operations will be ro rhe lefc. 18

This i the default eondition. Bic 3 on nybble 11 of Sh
is ecleared, Operations will be addieive, and shifes will
be to the right. 18

Sar bit O of §b nybble 11 so that eperacions will occur
- doeimal mode. Alse FETCH and STOW will assume RAM
program pelnter operations. 19

Clear bit © of nybble 11 in 5b. This is the defaulr so
that sll arfthmecic operacions will secur [n HEX. Alaa,
FETCH and 5TOW will assume ROM addresscs. 1%

Adds or subtraccs the current curtain address to or from
Sh nybbles &-6 depending on the setting of bit 3 of 5h
nybble 11, Always perforas in HEX mode regardless of the
secring of bit O of Sb nybble 11. 52

Adds or subtracrs 5b pybbles 0-2 to or from Sb nybbles

4-B in HEX or DEC mode, depending on the setting of bits

0 and 3 in 5b aybble 11. Clears the earry Elag ar che start
and sers it 1f an arithmetic overflew cccurred. %]

Adds or subrracts the 5h pybbles 7 and 8 to or frem the

55 reginter between the cerrent polnters in HEX or DEC
mode. Intzlally clearn the carry flag, but sets it i

an orithmeeic overflow ocverced, The current palncers

are determined by the values found in 5b nybbles 13 and L2,
and bics O and 3 in oybble 11 of §b determine the mede of
operation (see above). a3

33

24

Hame

[-H

ADRA+-

B4-

BOF

TeEsLE

BYTE?

ADR?

EQADR?

£ ADR?

LTADR?

FTR=h?

A=R7T

PPC TECRNICAL NOTES #16

Function Ho. Bytes

Takes 4 number in the X register ca a decimal, and converts it
it to hexadecimni, and places the result back iante the Sa
register right justified. The absolute wvalue of the input
aumber [8 uwsed., "ALPHA DATA' error will sccur 1f an alpha

fnput iz given. Husbers greater than 65533 will resulr in

'OUT OF RANGE'. The Sa reglster is left shifred aparc from

the nybbles 0-1 which contoin the answer. This function may
therefore be used to load the S5b nybbles 4-7 (when followed

by EXBYTE} without disturbing ALL of the 3a regfater,

This [upctfion takes ehe nybbles of Sa numbers 0-2 and
creacs them as a HEX argument. This argwsent is then
conwerted ro a decimal number in proper HOD format

uhich is placed hack inte the 5n register. This may then
be read out with an ARGOUT for example, or stored in

a wser cegister etc, Maximum wvalue of the Aumber will be
4085, 135
Hearly the same as above, but expects 4 nybbles of
avgument. That ia, it rakes nybbles 0-3 of 5a and

conwerts it to 4 decimal number. The maximom wvaloe of

this aumber will be 65535 for am input of FFFF. 70

This fumction increments or decrements nybbles &4-6 of
5b in HEX pr DEC mede. It ¢lears the carcy flag, and
sets it wpon arithmecic overflow. Consulecs nybble 11
of the 5b regiscer for its mode of operacion. 40

As fer ADR+-, but acts on aybbles 7 and 8 of the 5 b register. 39

Adde or subtracts nybbles 9 and 10 of 5b to or frem nybbles
7 and 8 of 8b in HEX or DEC mode. Initially clears the
carry flag, and sets it if an arithmetic overflow pccurs. 8

Sets the carry flag (bic 1 of nybble 1L in the Sb reg)
if nybbles 7 and 8 are equal to nybbles 9 and 10. If not
chen the carry flag is cleared. 92

Sets the carry f[lag if nybbles 0-2 of the 5b regsirter are
equal to nybbles &4-6. Clears the flag 1if not. 24

Mg above, but eests nybbles 0-3 wich nybblea 4-F of the
b register. 17

Sets the carry flag if nybbles 4-6 are less than aybbles
0-2 of cthe $b register. CGlears flag if not. 19

As above, but tescs nybbles 4-7 for being less than 0-3. 33

S5ers the carry flag if the currently selecred pointer
is equal im value to the aybble 7 of che 5b register.
Clears the [lag if aot. EL]

Sets the carry flag 1f the contents &0 the Sa reglscer
between che curreat pointers is equal to the contencs of
the RAM register specified by the RAM address in nybbizs
4-& betwéen the pointers. Clears the ecarey flag Af not. gy

PPC TECANICAL NOTES W16 35

———— -

Hame Pupction Ha, Dytes

ACHT hs abowve, but cests 1If cthe 5a contents i3 less than the
selecred register between the poincers. Note that this
iz a direct less than test, and makes no assumprions as
to the format of the 5a register. For example, if a BCD
nuzber is in the Sa register, and the pointers selecr for

the entice Sa reg, then it will HOT be the same as X<Y7 7

A=07 Scte the carry flag Ef the 5a regisgter 15 zero becweon
the current pointers. Clears the flag if not. 458

RROMT Takea the value in nybbles 7 and & of che 5b register as

an XEOM number {Ln HEX }, and leoks far that ROM in the

ports. Lf it Finds it, then it sets cthe carry Elag, and

the stare address is placed into nybbles &< of the S5h reg.

If the corry flag is cleared, then that ROM is not PTESERT. 49

[ROM? now starts looking &t address 3000, and i{s able Eo

cope with the ¥ Punctions located there in the new 4loX.)
ocher

ICODE This Ea the function called by all the above routines. It
can be uveed ag & fumctlen in its own right however. When
called Erom the keyboard it prompts Eor the entry of a
twe digit decimal number which corresponds to & furcher
funcrion you want executed. This ean be one of the 23 weiliey
functions Llsted below. If placed into a program, it exaamines
the bytes following it for instructions on what it is
supposed to do. If the feollowing bytes are anything other
than an Fl or F2 text byte, then it checks for the scratch
registers. TE not found, then they are creaced, If found,
then they are eleared., If the byre following ICODE is an
Fl eext byte, then it checks the pext byee. IF {t cades
for the character 'D', then the current scratch registers
are dissolved, and the .END. is replaced onte the previous
program. Lf che characcer is an 'E', then it dissolves or
erases &6 many scratch reglsrers as it can find, chen ic
retutng. LE Ehe character was a 'D' hy Ehe waiy, and na
serateh rogisters ware found, then 'BOHEXISTERT' regults,

'E' never gives an errer seassage. If the character was an
', then the current sec of seratch registers will be
duplicated, and you may now opecrate on a noWw set of scraceh
reglsters wichout discurning the old sec's centents. The old
contents may be recoverad following a dissolve command or

by uelng the swap scractches utllicy functicn described below.

If the letter '5" follows ehe ICODE function, then & new ser

of scratch reglaters are ALWAYS created regardless of whether

old ones existed. This permits ICODE routines to call up other

ICODE toutines as subroutines withowt disturbing che firar lot

of registers, The subrouctine should scarc with LCODE °"S5°, and

hould end wich ICODE '0' which will dissolve only the zcratches
vied by the subroutine. The calling routine will then be returned
to with its scrateh regiscers (If any) intact. Sec also the wcilicy
functiens (balew) for further manipulations of the scracch regiscers.

1f a single character other than the above appears, then
‘DATA ERROR" will ocecur. If an F2 cext byte £s found, then
ICODE ¢EpECLI EWO alpha chatys whieh wil: cade for an
argumeant representing the nusber of the wtility funcclon to

36

PEC TECHNICAL NOTES Flé

be performed (see below). For example, ICODE gF will run Ethe
zero'th utiliey functicn in the same way as entering two

zeroeg In response to kthe keyboard prompt when ICODE 18 executed
monually. ICODE validates the characters, and if any other than
- 9 are found the message 'DATA ERROR' results, 574

Urilivy functions

These are a set of functions which are executed by providing
& rwo digic decimal argusent to the ICODE routine. They may be
run feom che koyboard (by [illing En the twe prompts after
executing 1CODE) or they may be run from a program by placing
ICORE inte the program and follewing ic wich 2 decimal alpha
characters corresponding to the argument required. See ICODE
abowe for further decafls. Also see LDE for the behaviour of
ICODE and LDB durting single stepping of prograse centalning
them. Morte also chat to place TCODE inte a program, you will
have to encer 2 digies before ICODE will place itself into program
memory. These digits disappear as soon as they are eatered, however,
and you must follew with the ? alpha character arguments as
explained abowe. This strange behaviour has to do with the main-
frame prompring routine net expecting external ROM functions
whieh are prompting to be programsable.

Funetfon Ho. Description

i1} Does a goto =eracch register operation. It looks for the
first seracch register vp from the .END., and places che
program pointer ac the syathetic label that cach of these
seratch registers has. 1o is most useful in combinatien
with the following routipne if you have lost atcesa Lo you
seratch reglscers {eg by editing a propras or adding new
programs ctg.), It is best Co actwate manually from the
keyboard or else it will exeeute che scratch reglscer as a
program. This dees no harm except that it will load the
contents of the scratch registers inco the alpha reglster,

01 Copies the 14 bytes follewing the NEXT byte inco a nev act
of seratch registers. Let vs say chet you have lost access
te che scracch registers which you previously had. Execute
ICODE 00, then 55T, You will now be placed at the text byte
Fl&é which precedes the follwing 14 bytes (which are the b
and Sa register contents in cthat order). Execute ICODE 01
and you will have created a new copy of the scratch regipters
with the old regiscer's contents as a corrently usable aet
of seratches. The old ser are not disturbed in any way. You
might wae 1CODE Ol as n more general way of placing progras
bytes into seratch registers for larer decoding ete., although
the FETCH functlon may be o more controllable way of doing this.

FOUNDING FATHER IS RETURNING TO HIS HOMELAND

Grasme Demnes was a memher of PPC while most of us were still innocent,
and was one of the 16 who mek in July 1979 to establish PPC Celbaurne.
Hiz help then and until he Left us in 19680 to work in the USA was guite
invaluakle - but pow he is to be back here for a few days in Melbourne,
before going to Queensland. He arrives on April 13th. Address not yet
known. While in Georgia he fell victim ko an 1BM PC, and ‘founded a uwser

group im Macon, If possible, we will organisc some kind of occasicn to
meat =im before he aoain lsaves. John ED.

PEC TECANICAL NOTES #16 ar

Fungtion Ho. Description

o2

a3

o4

05

06

07

Ju:]

09

g

11

1z

This returng the correet number of free rogisters as a HEX
number and placeées it in the nybbleos 4-6 of che 5b register.
It is the equivalent of dolng a GT0.. then going inre FAGH
moda. Unlike the F? funcrlon of the PPC ROM, it always
accurately reflects how many registers are available,

This ¢alls up the HEXEE routine as Found in ASSEMBLER 3, but
it places the CODEd arpument direcely Inte the 5a regiscer.
It will ereate Sa and Sk L7 they were not found.

This is a routine euphemistieally ealled "MUSIC'. It is
basigally as published in FPOTH 15 P73, It treaks the
EFlest byte in the Sa cogister B8 an acgument foe the TOHE
Functlon, then shifts a copy of the Sa contents bwo bytes
right, and treats the next byte as a wariable length pause
[F will give a pause of sbout 0.5 seconds). It Ehen shifts
the conkenks kwo bykes right, and checks to see if the
register iz now empey. If it is, them the routine exits,
if mot, it cycles beck bta the TOHE/pause routime. Thus a
maximum of Eive TONE's and four pauses may be executed by
one call to ICODE 04.

This guspends the key assignments by clearing the bics in the
key assignment flag registers. It was wrltten by Meil Hunter-
Blair.

This testores the key assipgnmenta {including prograzs) that
were suspended by SKEY. It requires the presence of the
HP-TIL or the extended functions wodule. It was writtenm by
Keil Hunter-Blair. See PFC TH 15 P3l for ICODE 05 and 06,

Returns the address of cthe last wsed key assignment register
to nybbles 4-6 of 5b La HEX formec. Creates the Sa and 5b regs
if they were not found.

Reeurns the address of the last Eree ID reglacer (ecouncing
down from the .END.) inte nybbles 4-6 of the 5b reglscer.
Creates 3a and Sb if nor found.

Swaps the last cwo sets of sormtch regiaters Lf two or more
were credated [see the ICODE write-up on how to hawve more cthan
one et of scrateh registers). Gives 'HOMEXISTENT' L{f no
geratches are found, bur dees not check for the existence of
BOTH sets before swapping, so careful wher you use it.

Thia functlen takes & decimal number In the X rvegiscer, and
regards it as the XROM numbar from which te stert an CAT 2
catalogue, Lf the ROM does not exist chen: "HONEXISTENT®.
This i5 as per Jean-Daniel Dodin {(see PPCTH 15 PSE).

Clears all tilmer alaems. Written by Heil Henter-Blair. See
BPCEN 15 PIL.

Retuens the address of the asusmation registers to Sa nybbles
3 to 5, and the curcenk SIZE to aybbles O to 2.

kL)

FPC TECHENICAL NOTES Flé

Fonccien Mo. Nescription

13

Lé

15

1G

17

1E

is

20

21

Led
-

Suppeesses tralling zerocs on @ number. It places the display
into SCI fermat, then slects the minimum cumber of digits to

be displayed so that all trailing zerces are blanked. It is
mednt fe Save on storage space If you are placing alpha numbers
into ascii files. Tts o gquick and dirty vowténe at present
though, because ic also places che ecaleulater inte DEG mode,

Clears registers specified by a number placed fnto the X reglarer
in the formac: BBE.EEE. 1f the BBE register does not exise, then
"HONEXISTENT®. 1E the EEE regfater is greater than the last
existent register, then this Ffenction will clear up e and
inculding the lase exiscent register, but will not go further

{eg will not clear extended memory). "DATA ERROR' resulcs if

EEE is less than BLRE.

Performs a shift of che alpha regiarers. The M repgiscer 1z lost,
K goes ta H, O goes to M, and the first 3 characters in P are
moved to 0, and the rest of 0 is cleared. The P register is
cleared. This fumctien is meanc to be used afrer the next two
1CODE functions fn much the same way as ASTO and ASHE are used,

Scores the coatents of the alpha M regilster into the Sa register.
It ereates the seratch registers if they are not found.

Swaps the alphe M register contents wich the 5a reglster. Glves
'"HONEXISTENT' if Sa and Sb are not found.

Goes te the END. It meves the program pointer from ROM into
RiM, and lands at the ,END, All subroutine calls are cleaged.

Tiny little routine to réturn the mantissa of a pumber. So Cogy
to do in M-code that I just had to put it in.

Howes the program pointer to the global label found in the X
register (eg after an ASTO X} chen stops program exccutlon.

This is the programmable equivalent of & GTO label command
perfor=ed from the keyboard, and does oot require 5TOPs to be
placud Imﬂ&diatuly after global labels i vou want the user keys
to beceme active (¢g for local labels).

Recalls the program pointer to 5b aybblea 4=7. The nybbles could
then be moved to nybbles 0=-3 or octherwise manipulated. prior co

i FETCH or STOW command. Creates che Sa and 5b regsiters if chey
were not fownd. Sets the carry flag Lf PP was in ROM, else clears.

Places the address of the ,END. inte the 5b reglster nybbles &4-6.
Creates the Sa and Sb reglscers If they were not found.

Stores the b nybbled 4=7 inte the statwes reg b program polnter,
If the carry [lag was sec, then the FP will be sec co ROM.

Performs HEX addition of the 5a and Sb registers, with the sum
ending up in 5a3. This eperation functions over the entire registers
and does not set the carry Tlag I the digits overflow,

Subtracts in MEX mocle, the S5u register from the S5b reglster, witch
the difference golng to Sa. Occurs over the entire registers. Coarry
Ils nor sef on underflow.

PPc TECHNICAL NOTES B16

26 Recalls status registers a and b and places the coatents into
34 end Sb registers respectively. Creates Sa and 5% iF noc
glready present. When combined with ICODE 27, ecan he used eo
extend the subroutine eall stack to an indefinite length.

27 Recalls the Sa register and places Into status reglster a.
Rocalls the Sb rogister and places into status register b, but
does not overwrite the pregram polncer in register b. Thus this
can be used with TCODE 26 to extend the ability of the HP4AL o
make subroutine calls.

28 Clegrs all subroucine calls, but does not alter the program
pointar.
29 Transfers the alpha registers to the scack In the follewing

Fashion: Heo X, N to ¥, O ta 2, P tp T.

30 Transfers the stack contents to the alpha register in che
following Eashion: X to M, Yto N, 2 te O, T to P,

ki Exchanges the alpha M and W register contents with the stack
X and ¥ register contents respectively.

32 Sets the message flag then places the contents of the Sa register
into the digplay. In other worda, it is like a VIEW Sa comzand,
ex¢apt that it does not primt che display and it does aot normalize
the Sa register contents. Thus Lf you want to display a message (up
to & chars) to the vser during & program, but you den't want to
disturb the ALPHA reg {or the stack or numeric registers) then you
can set up the Sa register (epg with ASTO X then ARGIN) so chat
ICODE 32 will display the information. If a BED number is in the
Sa reglster then it will be displayed as a number. That is, the
normal rulea for displaylng ALPHA of numeric aybbles in the X reg.
are followed. This inclodes respecting the display formac (eg number
of decimal places, roadix ece.).

FURTHER DATA ON SOME I-CODE ROUTINES:

SHEFLG

This function awapas Sb nybble ¥ with nybble 11, Internal bits 0-3
of the 5b nybble Ll may thus be ser with onc operatisn. For cxample,
if HEX 7 wos in nybble %, then after SWPFLG, the carry flag would be
set, the 5b reg would be in + mode, and would be sec &t pointer 2, and
it would be in DECIMAL mode.

EXFLG |

This function permits the bie manipulacion of dacn stored fa che
seratch reglsters. It exchanges uwser flags 0-7 with the Sb §-10
nybbles. The most niq&&f. bit of 5k 10 will correspond to flag O, and
the least aignif. ble, will correspond to flag 7. This command could be
vweed to save user flage O-7 prior to some program run, for later restor-
ntion, or it can be uvised to manfpulate the bits [n the 5k 9-10 nybbles.
For example, asy weé want the second blc in nybble 9 to be set. EXFLG
AF 06 EXFLG would pecform that cask. Of course the aybbles in 5b 9-10
=iy have been placed chere Irem che Sa register or othe: placis e 2. zte.

ag

44

FFC TECHNICAL NOTES #16

COMMANDS WHICH CONSULT HYBALE 11 IN THE 5b AEGISTER:

CPUFLG ADERT
SLLTL EQADRY
SLCT2 CADRT
SETT LTADRT
FTas?s PTR=B?
PFNTROP A=RT
SHFA ALRT
SHFOP A=07
SHFBIT KromM?
EEYE ECODE 21
ROTA ICODE 23
HOSKIP

CEKIF

FETCH

ST

SET-

SET+

SETDC

SETHX

CURTOM

ADDROP

BOFA

ADR+-

B

BOF

BYTE?

EXAMFLES OF THE USE OF I-CODE FUNCTIONS:
GET

An example of the wvse of chis funcclen might be to recrieve B non-
normalized nusber from & wser register. Altermnacively, it can be used
as a replacement for synthetic ipstructions. For example, if &b &-6
holds HEX O0OE, cthem the GET function would recall the 14th register
from the betcos of memory. This 1s equivalent to RCL d, exceépt that
the X register needn'e be discurbed, and flag operatlons may be
parformed on the Sa registers without fear of S5T destroying the flag
TEeRLECEr CONCONCE.

BT

In similar fashion, STO ¢ i5 a nasty functiom to have in a pragram
if you are single stepping without carefully watching the stack contents.
HEX Q00 placed into Sb 4-6 followed by PUT will store the 5a centents
into register ¢, and the stack may be analyzed as required during 55T.

SHFTE

This Fenction is most useful for seccing up both polncer positilons
with the one command. Have a look at the example I1CODE pregrams. You
will cfren see it used with LOD which [irst leads 5b 7-B. SWEFTR chen
exchaages aybble ¥ with che pointer 1, and nybhle B with pointer 2. Thus
the pointers can both be ger, and tested with this command.

PPC TECHNICAL NOTES H16

EXAMPLES OF ROUTINES USING ICODE FUNCTIONS

al+LBL

az
a3z
B
(5
as
ar
oz
a9
1a
11
12
13
14
15
16
17
ig
19
28
21

= CUP

ICODE
<7
SET-
HES
ARGIH
n=H
EXMYE
CURTOPF
LIDE
ﬂea "
RCL <
ARGIM
SET+
REYEB
EXHYE
SET—
REYE
ARGOUT
STO o
EHD

DECODA
AVIEN
H-D
ARGOUT
EMD

This roucine performs as per the CUF rvoutine in the

ERC ROM &

it cakes a decimal value from the X regiscer

(+ or =) and adjuscs the curtain address in the €
status register accordingly. The first TCODE command

fs Followed By & test. Since’ thiz L= not a text byte,
the ICODE command will creatp and/or clear the scratch
registera. IE the number was a negative, chen SET- will
ser the 3b regiater for subtraction. ARGIN mowes the
absolute X reg value (see scep 05) inte che 3a Teg. D-1
comvercs it to hex, and EXNYR places it into Sb 4-6.
Curtop Lhen adds or subtraccs che curtain address to or
from this valus, LDB 03 places hex 03 into Sb 7=B. RCL
recrieves the current status regisCer contents, and
ARGIN places this into Sa. SET+ ensures that Sk is now
get For addiclons regardless of the previous status.
RBYE rotates the 5a register clockwilse (because we are
in 4 plus mede} the number specified Ln 5b 7-8 (hex 3).
EXNYE places Sa 0-7 (the currain address) Late Sb 4-8,
and the new cortain is exchanged inte Sa 0-2. The Sa
register is rotated anei-clockwise 3 digits, and the
new regisrer ¢ contents are placed into the X register
for transfer co scatus ceg ¢ wia S5TD c.

The following roucine demenstrates the vae of the
weility funceians provided with the I-CODE croutlnes

to permit wseful syscem informaction bo be obraimed,

iIn this case it is desived to Eind out how much free
I0 space is present fe the number of registers

between the last KAR or ALARM and the .END. We require
the cotput e ke in HEX appendod to the alpha regiscer,
and we want the output inm ¥ as a decimal nember. First
we clear the 53 and Sb regiscers by ICODE. The second

1CODE has D8 ax ics argument,

so function 0B i3 rum,

This returns the lowest free ID regiscer te 5b &-6.
This address £s placed into 5b 0=3 by SWFADRE. LCODE 22
returns the ENB, address to 5b 4-6f. We set che ib
register for subrraction by 3ET-, then ADDROP performs
_END. minus last free I0. This glves us the HEX number
of free [0 rTegisters in Sh &-6. EXNYBE places this o Sa
0-7, LDB 20 places hex 20 to Sb 7-8, then SWFTR places
this byte ince nybbles 139 and 12 of 5b {the pointers).
He now load wp che alpha register with a message, then
DECODA decodes the Sa reglster between the pointers

(ie Sa 0-2) and appends Lhe characters to the alpha ceg.
AUIEW displays the resulp, H-D converts Sa 0-2 to 4
normalized BCD number in Sa, dand ARGOUT places this
number lnco the X tegister.

41

C

42

PPC TECHNICAL NOTES R16

E1=LEL "“0OH" The following 1-CODE converts Octal to Dec and HEX,
G2 =ocTT" MEX ra DEC and OCT, and DEC to HEX., It starts by
B3 PROMFPT setting up the alphs register for the input of an
a4 DEC | seral number. This is converted to decimal by che
85 GTO @1l mainframe. A ju=mp i8 then made to LBL OL. I you
ae+LEBL "DH" entered at the global jabhel DH, then fr is assumed
a7 “DEC?" you wish ro cenvert from decfmal to hex. Thus the
@3 PROMPT appropriate alpha prompr is set up for that.
Eo9+LLEL @l
18 CF 29
il FIX B y
12 SF =21 Both reucines cose to LBL 01 for com=on processing.
1= ARGIH Flag 79 is clesred for alpha formatcing of numbers,
14 O-=H FIX 0 is set, and flag 21 is set to allow the
iS5 LODE printout of alpha views.
16 =38 “he decimal nember in the X register is placed
17 SHFTE into 54 vis ARGIN, and is converted to HEX by
18 “"HE®=" p-H. LDE 30 places hex nybbles 30 into Sh 7-5.
19 DECODA SWPTR places these nybbles te Sb J1 and 1%, thus
%"? n;é%"_l serring up Che pointers. The alpha register is
= = then aset up, and DECODA plages the 5a register
22 '?FL’I" b decoded between the pointers afrer che alpha string
Ej g.}"rﬂE“ in the alpha rTegiscer. This is then AVIEWed, The
= Decimal number is placed inte the alpha repister vis
25+LEL "HD" a furcher B/5 if desired
26 S5F 21 3
27 "HEXKT"
28 ICODE For converslon frem MEX to DEC (and ta OCT), flag 21
29 =@a3" is again set to allow AVIEW to print. The alpha reg
30 H-D4 ia set up for an Lopuc, and ICODE 03 functions ms
F1 ARGOUT HEXKE, with the input going directly to the Sa
2 CF 29 register. More tham L4 characters may ke enterecd, but
33 FIM © enly the righomost four will be converted to a
Z4 ©"DEC=" BCD nor=alised number in the Sa register by N-D4.
25 ARCL X This number is transferred es the X veg by ARGOUT.
26 AVIEW It is then displayed and converted to OCT and
3I¥ 0OCT further displayed as required.
35 “OCT="
29 ARCL X
48 AVIEW
41 EHND

@l+LBL "H-—-"
Perfomms MEX subraccion withowt disturbing the gé IEEEEI?
user STACK, The first step is to set up the alpha g4 @3-
reg ready fer cthe first argument to be input via A% EXAB
1CODE 03 (ic WEXKE} with the coded result being placed @& “ARG 27"
inte ehe Sa regiscer. ENABR swaps the 5a and Sb regs. @7 ICO0ODE
ARG 2 Ls new inpur, again wia ICODE 03, then HEX ag *a3"
subtraction is performed on the St - 5a reglsters @9 ICODE
via ICODE 25, Fer convenionce, I have then uaed LDE i@ =23~
te plage hex 30 inte the 5b 7-8 nybbles, then i1 LDE
SWAPFTE ro set che pointers to chese nybbles, so chat 12 =3@*
DECODA will then nppend the oybbles Ba 0-3 Into the 13 SHFTR

alpha register. This pair of nybbles may be changed
e any valuves including DO Lf the entire 5a reglater -]

14 “HEX SUM

is to be decoded. The HEX subrraction is perfomred 15 DECODA
over the entire Sa and 5b registers. Finally, H-D& ie AYIEW
converts the Sa 0-3 aybbles to a BCD number and 17 H=D4
ARGOUT places it into the X reg. This scep may be ig ARGOUT
recoved Lf the requiree resolt ir wanted in HEX only, 1% EHD

ppo TECENTICAL NOTES WN1é 43

This program permits rhe bytu by byte analvsis of

gl1+LEL "HREHR a program resident in RAM or ROM. The dissection

Zz«+LEL 84
23 SHPADR

N can be in decimal {(flag ! ser) or HEX {flag 1 clear).
gz CF 81 The progras polnter must first be placed into scratch
AZ CF 21 register Sh 4-7. Thiz can be done by ICODE 21 when
a4 FS7? 593 you have placed yourself ac che program you wish co
@5 SF 21 dissect. The carry flag will be set (£ the PP was in
Be CF 23 ROM. Flag 2L iz set to eaable printer operation, and
a7y “HEX?" Elag 23 is clear fer alpha number formatting. Thus
B8 RAOH when you XEG XRAY, you should press an alpha chavaccer
B9 PROMPT if you wish VEX deceding, ot press R/S if decimal,
12 RAOFF
11 FC?C 23 Flag 1 will be set accordingly.

12 sF 81 The PP in 5b is placed inte Sb D-3 by SWPADR, then
13 SHPRDR the carry [lag srawus ls cheched by the HCSEIP scep.
14 CF 29 If earry was ser, then GTO 01 will be executed.

15 FIK B8

16 MCSKIF

i7 GTO B8t

18 SETIDC 1E not, then we npow SETOC to set the FETCH command
19 LDE to decode a RAM byre racher than a ROH byte (see the
2B 1o~ FETCH command}. LDB 10 loads hex 1O inea Sh ':r-ﬂ, and
21 SLHPTR SWFTR sets these nybbles as the pointer positions.

SWPADR replaces the PP back to S5k &4-7, and X La cleared
to allow the ARGIN command to clear the Sa register.

24 CL¥ 0.9 is encered inte the X register as the byce
25 ARGIH counLear.

26 .9

2F7«LBL 82 The alpha register is then leaded with the alpha
28 “BYTE string for outputting, and cthe byte number Qs
29 ARCL X appended with ARCL X.

28 k="

31 ISG =

g% §E;Eﬁ FETCH iz then executed to bring the byte at the

24 FC? @21
35 DECODA
36 FC7? 81
37 AVIEHW

38 FLT @1
29 GTO B2
48 H-D

41 ARGOUT
42 ARCL X

current PP into the Sa regiscer O=1. The PP ias
moved co the next logation. Lf [lag 1 is clear, then
DECODA 15 executed to append the HEX byee S5a 0-1 o
the alpha register. Lf flag 1 is clear, then the
alpha register is AVIEWed, and a jump is mada to
LBL 02, Lf flag 1 was ser, then a H-D conversien is
done on the 5a contents, and 8 BCD number is now in
5a to be gutput to X with ARGOUT. This is then
appended to the alphe reglster with ARCL X and is

43 AVIEM then AVIEWED, The 5a register is then cleared by the
44+LEL B3 CLY ARGIN sequence, and a jump i3 made to LEL 02,
45 CLX

46 ARGIH

47 RDH

48 GTO 82
4a+LEL @1

I{ the program has jumped to LBL 01, then the PP was

s8 LDB o ROM, and the pointers must be set up to decode a
=5{ =2O" 1 nybble ROM word, This is done by LDB 20 then SWFIR.
52 SHPTRE Hew mode 5 set to make sure chac FETCH recalls from
5% SETHX ROM rather than RAM (see the FETCH weiteupd. A jump
54 LT B is then made to LBL O which can now take care of the
55 EHD fprmatting of the output serics of ROM words. FRETCH

putoflnerements after cach upnTilti-Ol'l, so that it steps
through HOH pne word at a Ccime.

EYTE
EYTE
EYTE
EYTE
EYTE
EYTE
EYTE
EBYTE
BYTE
ETTE
EYTE
BEYTE
EYTE
EYTE
EYTE
EYTE
EYTE
EYTE
BEYTE

BEYTE
EYTE
EYTE
EYTE
EYTE
EYTE
BYTE
EYTE
BYTE
EBEYTE
BYTE
EYTE
EYTE
EYTE
EYTE
EYTE
BYTE
BYTE
BEYTE

BYTE
BYTE
EYTE
EYTE
BYTE
EVTE
EYTE
BYTE
BYTE
BYTE

I=G40C
i@=04F
11=054
12=18a0C
13=1F=
L4=084E
15=841
1&=84D
17=045
1g=0z20
19=03F

1=Cg
E=00
Z=F5S
4=02008
S5=58
B=302
Tag41
2=59%9
I=HT
1GB=a1
11=608
1z2=38
1Z3=060
14=G0
15=0648
le=RA%
17r=15
ig=QC
19=37

1=19&
2=0
=245
4=0
S=32
=32
T=e3
S=80
I=169
la=1

FPC TECKNICAL WOTES 16

This is an XRAY vision of the printer PHRPLOT user
code program resident im the printer ROM. It is
decoded here in HEX fors.

This is an XRAY vision of the XRAY program itself,
starting with the global label.

The nulls here mean the program wesn't packed. The
decoding was dona in HEX here.

This is the same as abowve {ie a view of the XRAY
program itself), bur the decoding has bean done
in decimnl.

L

Bi+LBL “HRC

az
Bz
R
(5]
a&
av
Ba

ICODE
D—-H
EHHYE
CURTOF
GET
RRGOUT
EHD

PPRC TECHNICAL NOTES #168

Performs a non-normalising recall from the register
speclfied in the X register. The firvar ICODE command
{as [ollowed by & byre other than &n Fl or F?, 8o it
clears the contents of the current zerateh reglsters
{or creates them if they are nobt present). D-W converts
the decimal number in the X reg to HEX, and places the
nybbles inte 5a 0-3, EXNYE places nybbles 0-2 (the reg
addross into Sb 4-6. CURTOP adds the curtain address to
chis register address, and GET recalle the contents.
ARGOUT places the value ince che ¥ register (and
lifcs the stack.

Hotice that there is another way tno load the Sb 4-8
nybbles: replace steps 3 and & with XADR which directly
loads the HEX conversion of the X reg number intoe Sb
nybbles &-6.

43

This L[-CODE routine neatly combines the SIZEY

function with & routine co compute how many Bl1+LEL *MEM

iree registers are awallable. Firsely ICODE 02 "

is executed which calls up the =ainframe @82 ICODE

routine to return (in HEX) che number of Eree a3 =ga-

cegisters to Sh 4-6, EXHNYB brings thesc nybbles a4 "REG -

to the Sel=2 nybbles, and H-D converts these 85 EXMYE

nybbles to o decimal number. ARGOUT moves this Bs H-DI

pumber to the stack, and flag 29 and FIX O are A7 ARGOUT

used for the elpha recnlling of chis walue. ag CF 29

The SLEZET function is then exccuted to retutn 89 FIxX @&

the nuzber of free registers which is then 18 ARCL =

brouvght into the alpha register. Thus the X reg 11 STI2E?

holds the SIZE and the ¥ reg holds the number 12 2k -8g =

of free registers afrer execution. 13 -ARCL
14 ARGIH

Bote: ICODE 12 now rekburns the SIZE ko 15 AYIEW

nybbles @=21 of Sa, hence it could be 16 EHD

uead in the above routine in place of

the function SIZEY, should thakt not be

available. {See page 37 abowve.)

BlsLBL =nMuSiC=

02 -4R0s4a3Ta48"

93 1C01E This demenstracion program ghows how

B C036
A5 1COIE

86 04"

e §1e]
BH -4 Jo50E4 J85R04 3
@9 [CODE

18 CODA

11 [CODE

12 *g4*

13 £T0P

14 -4083%E45R3F0494"
15 CO3R

[& 100TE

I7 =B4-

18 EHD

+uree different sets of cone sequences may be
simply generated using che ICODE 04 funceion.

The Alpha register is set up with the required
bytens a5 shown in step #. The ICODE D4 funckilon
will read these nybbles froo right to left;

Eirst 2 nybkbles as a tone, next nybble as & pause.
Thus we will have TOWE hex 48 then no delay (value
of nybble 1a 0), then tone 57, ne delay ete. Svep 3
makes sure that the 5a register 18 empty before the
CODA step {sce wrlte-up for CODA).

d6 PPC TECENICAL NOTES §le

In the course of an investigation of the True Algarithm for the
computacion of BOM/XROM checksums, Paul wrote the Ffollowing,
desperately slow program which will do the job accurately, but
in rather wnreal eime. (S0 try dofng it withouwt bepefit of ICODET
Well, with the aid of ASSEMBLER 3, ete., ete.) As Pawl is not around
ac thiz time of compilation of this fssee, evil .ED, stuffad it in.
fe iz, by the way, an example of a programfroutipe which is begt
written in microcode (remember that?), mainly for its Speed. The
checksum computation effected by che Diagnostic ROM takes only about
twsaty seconds to deliver its report. Routines such as this are
very much longer Iunning. 5D,

FEF R RETET RS SS AT E S EFE LSRR AT SR T T AT

@1+LEL “CHS |27 .@96 55 ADDROP
=M= 28 GTO Oé& 56 EXADR
e °| 02 cF 21 2o+LEBL 1w 57 <ADR?
& w»| @% ICODE In EXAB 58 CSKIF
oaal @4 “3FF- 21 400" 59 GTOD 82
L2®| @5 coDA 32 CODA cE+LEBL 83
2 u| BE EXPB 323 EXAE 61 EXHYE
2.4 @7 -xROM NO|34 ICODE &2 SHWPSPC
N - 5 “=25" 63 GTD @1
"on| e PROMPT 36 LDB G4+LBL 02
radl @9 HBYTE 27 —28- &5 ADR?
“ a 18 ROM? 32 SHPTR 66 HCSKIP
woe| ‘1l CSKIP 39 “CHECK=-| 67 GTOD B3
s¥sl 12 RTH 48 DECODA 68 SET-—
s=x| 13 FETCH 41 AVIEW Go+LEL 985
28l 14 .aes 42 RTH 78 ADDROP
Eudl 15 EMTERT 43+LBL B7 71 <ADR?
avel 16 .999 44 RDH 72 CSKIP
s5Yl 17 GTO B85 45 .999 7% GTOD B5
e wol|l 1g+LEL ©1 46 GTOD ©1 74 SET+
M52 4e T86 R 47+LEL 08 7S GTO 83
=o,%ll 2e gTO BE 48 FETCH 76 EHD
| wm=l 21 ISG ¥ 49 SWPSPC
al %%a]| 22 GTO B7 58 ERHYE LEL " CHSUM
E! 32l 23 rFs? 01 51 ROTA END
Wi £o el 24 GTO 10 sz ROTH 172 BYTES
“ o2 25 sF B1 5% ROTH
s£28l 26 RDM 54 EXADR I

LIETINE OF THE EFFOE FUNCTIONS FECUITED TO TALK TO & TELETYFE FRINTERs

XFCM 2 FEG 000 = 3. 1415932

2 FURCTIONE FEG 001 = £23. 140692
FEG 002 = }.38PSBEEER]

ae: EE:; FEDH FEG 002 = 2. 71B31&E]]

Lt EZ FCF FEC OC4 = -

£21 ESE2 ECCHE lay ETPF COFYROR FEC 005 = gngggaﬁgg5

071 ESE3 FLV 151 E&FE OUTRON FEE DOE = 2T.%a43la

r&: ESEE FAFER 161 E1R6 FRFEG FEG 007 = D+035785

05t ESE3 ACX 1T ETDS IHFOW FEC DOE = 0. B9 170

reé: EnsS CHEFIMN 1 E&RD T FEC D09 = 2.809 188

07Tt E&%& CHEOLT 19: EECF FFETH

¢B: E0273 FEL St EIQD FFX 21.29ED

(31 LE(& TLET £1: FTES ELIL? EXfFRTLE OF PEA

10: F?8E FREUF £¢1 L4EE IHFCHR

I11: Eesm * #3: EBED HEXKE

i+ Lese ° Pa; E927 €OUTLLI ey

17r Eér T Siilscling

ExSDl FH

ai1+LEBL “FLG

PPC TECHNICAL NOTES #1686 47

nearly
This program functiena,as per IF in the PRC

e ROM, That is, it will set or clear the flag
a2 I1CODE number found in che X veg. If the number is
B2 EMTERT posicive, then the flag will be sec. If neg.,
a4 RBS then the flag will be cleared. Firscly, che
AS 55 aumber 1s subtracted from 55 to give the bit
Ge KW position from the right hand end of res d,
a7 -
B8 XBYTE The function XBYTE then places the decimal
a9 14 nunber as the converted HEY nybbles into SbT-8.
18 XADR ¥ADR places the ¥ reg number (14 here) into
11 GET 5h 4-6, so thac the following GET will reeall
12 RBYE the l4th megiscer (reg d). RBYBR rotates the 5a
132 PTR<B register vight the number of bits loaded into
14 SWPEYT Sa 7-B, and FTAS»E gwaps the Sa0-1 nybbles with
15 EKFLG 5b nybbles 7-8 when the pointer L3 at O (it is
1e RDIH becaunse we starced with cleared scratch regs).
17 RDH SWPIYT then swpas nybbles 5b7-8 wich 5b%-10, and
18 W<@? EXFLG exchanges Sk9-10 with user flags O0-7. Now
19 CF av we can set ot e¢lear the rightmose bit by setting
28 X»a7? ot clearing user flag 7 (the lefr=osc bit would
21 SF @v be wger flag 0 ece.). The setting is dependent
22 EXFLG on the sign of the Flag aumber. EXFLG and SWFBYT
23 SWPBYT now bring the bits back 'into the 5b 7-8 nybbles,
24 PTR<:B apd FTALYB swaps them with nybbles 5a 0-1 again.
25 SET- We mow do a SET- se thac che nexc RBYE will
26 RBYEB rptate the Sa left by the number of bits we
27 PuT previously rocaved it righe, and thea FUT places
%g Eag-”{ the contents into the veg d, because the Sb

f-f nybbles are still wndisturbed,

ONE HUNDRED AND ONE THINGE TO NOTE AROUT JCODE

on the opposite page an XCATIA of the ICODE XRAM image in
my MLT s followed by a listing of the rest of the functions which
it eantafns, in much the sama format. (I shall take to the grave the
details of the routine which produced this = and no peeking, either,)
It is, I think, fair to list these a5 separate functions. Though
the double [BOUBLEN!) duty ICODE itself (themselves?) functians bath
as name of the XRAM (as it still is) dmage and as functionm which will
aceept 33 postfixes from the keyboard as well as from text lines when
in & program, it will also accept four postfixes from text lines,
alpha postfixes, in program, The resulting operations are so varied
that ane should not think of ICODE, except nominally, as a prefix
1ike (say} 5T, or SF IND, which always do the same to the gizmo
signified by the postfix. But Faul's postfixes here just act as
signposts, directing the flew of microcode execution initiated by
che cperation af his functiocn, to differing stretches of code, to
carry out differing tasks. Sinee the number of such cperations is
limited anly by the XRAMJXROM space, there is pe particular reasocn,
except lack of perspicucusness, why a useful image should not have a
nace enly - in ehe way that HP count those things, have no functions
at all, But the name, with Cooporian postfixes, coxld ascess as many
fenctions as could be crammed inte 4 4 or &K Iimage, The cost Is
in the uzer sods program bytes - the JCODE is a pormal (well, almose
normal , for it iz XROM 19.83) two byte XROM fungtion, and fts Fl
postfixes alse take two bytes, while its two digit, FI post fixes
take three.,

Anyway it is something to ponder on: there are one
hendred and cne rfeasens why YOU, Desr Reador, should soon have an
JCODE EPROM set ta plug inte your Jim Aox/HLDLSMLI, etc., @tc.

Said =20,

B L [T TN ey

48

FPC TECHNICAL WOTES H1&

HEOM 19 = -
161 ROUTINES PRUL COODFRER (2916
@@ EGBR IC0DE
#l. EEAL BOF 15: E9BL SWFFLD
£2. ESR3 BAIR 6. ES05 EXRIR £8: JCORE "@°
83 ENS ARGIK a7 ESFG EXENTS &9: JCOTE °1°
B4 E326 ARDOUT I8 EARD CFUFLG Ta: ICODE °2°
BS: ETI8 X¥-3 13: ENSY CLEYF fl: ICODE *3°
B EJ4E S=XY 4@ ERER PTRIME 72: ICODE =4*
BF: E367 ¥7{kS 41: ERAR BYTE? 73: I1COBE =3°
BE: EIOF EX 47: EACE CSKIP 74: ICOBE =&~
BS: E3ED EXFLD 47: EAE4 HCSKIP 15: IC0DE *7
18: E4ig SLCTY 44: EAFR AZRY T6: ICO3E -8
|b: E42@ SLLTZ 45: EH|S EGRIRY 7#: ICOTE *9-
|2: E429 SETP 46 E#24 GET 78: ICODE =18-
|3: E44B PHIRDF 47: EESE FUT i%: ICODE =10*
14 E4q32 SET- 4@: EETA ADTROP pg: [CODE *12*
15: E4%5 SET# 45 EBEH SHPSFC BL: [CODE =13
1o E4B3 SETHM 56 ECOE LTARRY g2: [COBE *Id"
17 E4C9 SETIC 501 EC22 <ADR? £3: ICOIE =15°
19: E4PD ROTR 5% ECIB PTR=D? #4: ICODE “16°
12: ES8% LES £3: ECE1 ARGEX 85: ICODE =17
a: ES8E CURTOP 54: ECIT SHFOF g6 [CODE =18°
2 ESED EXHYE 55: ECUC SHFR §7: [COBE =19=
B2: ESCD K-E 562 ECBS ADR+- Bg: [CORE =28~
#3: ESFe O-H §7: ECOD b= B9: [CORE =21°
24: EEIR REVE 58: EDM4 BOPR S@: [CORE =22°
25: Eesl H-I4 5%: EDCA R=R? 91: ICOBE =23°
26 EGFE FECODR £i: EE®Y ACR? 92: [COBE =24°
27 EMG SWFTR £1: EE14 SHFEIT §3: ICOGE -25°
Z5: E254 COOR £2: EE3D f=@? 94: [CODE =26"
29: ERES REVTE £3: EE7E ¥R{N? 95; [CODE *27*
i0: ES2S FETCH 9¢: [ICOBE =28
31 £95) STON G4: [COIE =D+ %t: ICORE =-29°
33 BSTG SMPRDR 55 ICOTE "E- 3&: ICODE =38°
33, ERBF SWFTHP E6: 1CODE =t ¥9: 1C0DE “31°
34. ESAT SWFEYT £7: 1CODE =5° 1@ [CODE =32¢
THE SUICIDAL REPLY Mick Keid (4703)

The above, or a reasonable facsimile, was sent by Paul to Mick, who replied in his
wsual style, with critical and practical eormments. On some things he is right, on others thore
is disagreement, One thing that is clear: ICOLE is a programmer’s EPROM, and a frustrated
meods proglamer at that, Uut its routines are very powerful indeed, and seweral allow
flexisle entry 1o the operating system, even without benefit of any XRAM, much In the
manner of Lim=the=-®0OM"s COTOROM fenction which so puzzied me when B first tried that
pioneering ROM. But here is Kami, as he was on that momentous day, Movembar 15th, 1983;
He warned, hawewer, .ELL, put in the headings.

® B F OF O 8 ®F B B & & &
Dear Paul,
Thanks for tiwe 1=COLE stuff, which arrived today: will poruse it at the weekends

Lecation of the F14 ICODE Buffer

When developing the idea of tha F14 bwffer lactually F5, F14/F5, F14/ . . . ALBL
TEF AMY T}*FEMLY” {concerning that LEL "IF ANY": the user decides if he wants a label,
and if 50 rmakes 10 1o his own specs for reading, writing, ete. Mo need for "wkeyable”;
just delere), but Coedon |Rowelt] at first forgot how to get the first F14 spaced
correctly), the notion of putting it at the TOP of program memory wad ba guarantee the
" crocodedsser code interface® scratch negisters the ABSOLUTE MAXIMUM POSSIHLE
creatabality, accessibality, manipulability and deletatality - from all angles: keyboard and
user code, as well as microcode, and with UK WITHUOUT an EPROM box on,

FPC TECHNICAL NOTES {18

Tha argument for the top of memory

This latter paint i3 important when, for portability, or whatever reason, one is
separated from an EPHOM box (or doasn't possess one, and has to play the microcode game
in snatehes on borrowed gear, as several students in FPC have to d3) a5 it enables a certain
amount of microcode (or WODE) analysis and preparation, allowing all memorny-allocation
and user-code preparation to be set upstested with the 41¢ alone. The cuwrtain's
*stabilising" of the *placing® of the registers enables all of this, and ensures that (say) a
STO into the regs won't be foiled By a displacing of the FK byte by any passing PACK,

Time of creation and access of buffers and buffer stacks

There are many other passing et ceteras. To figure out how | might precreate a
buffer (properly spaced) ar top of memory, Say, with the 41¢ only, is easy. Putting one
after the present .END, needs a lot more thought. From the l-coda point of view, all this
Is imrnaterial: (CODE is a plug=in page of 10 bit code (well, almost immaterial: | oould
think of wseful situations whare KPN access to |-code droppings, or wice versa, would be
valuable), BUT the top=of=program-memory buffer was proposed as a general=purpose
microcode-rpn interaction buffer ino doubt one is needed), bafore news of |-code, the first
type of such ‘interaction® is sericusly implemented. 1ts major disadvantage, from the
microcody side of such interaction, is the time taken to create new paics of buffers (or
singrler buffers with F7), having to push down any proaram, as key assisnments have to push
up any LA, bat, given itd conception, the greatly increased ease of all other sorts of
controlfaccesssete. seemed to override that, The entire field of microcodes/uter code
interactbon ("RPN-LIB°ETE), of which I=code is the first codifled” parr, is (1 think)
communally Enteresting enough (uieful enough) to propose a bit of damned standardisation
about basic requiremsents, kke coemon storage areas, etc, so at least a gnat's worth of
portability batween individual 41c-enhanced systems remains

The alternative - top to bottom of memory Swapping

Althaugh | personally wouldn't worry about the time of ereation at the top of
program mermory, soeing as it is more-or-less a one time thing: once they've been put
there, so all else is equal, timewise: nevertheless, if you're stuck on doing it at the
EMDor I-code, then I'd suggest that the notion of a general-purpose interaction=buffer
requirement, and the maximisation of its interactibility, BE LODOKED AT, Civen this wery
last requirement, | think it goes (in a stack) at the top of program memary. Maybe it
doasn't, but if it does, it would be waorth having as basic. |-code routines, two of which
(at leasty swap the current i-code registers at the JEND. for the second and third down
under the curtain, so as to make the major “interaction” development to date easily
laadahle from the registers | set up in the train on the way here tonight . . . or whatever,
It would mean being committed to a bit of “damned standardisation” in advance of ns
existence, but, a3 HP keep on demonstrating to ws, that's how to advance its existence.

Cordon (The Count) Rewell répents, and the ProtolCODER gets ABS minded

The other news from Sydney is that G. Rowell Is about to return to the 10 bit fald, it
seems. The snlggers got ta him. Apparently a new develocpment from M. Crowle has
interested him, given his almost-finished ProtoCODER adaprion of ASSEMBLER 3, Tha
sald Melson C. is even now, rummaging arewnd with his Exacto, cutting traces and jumping
here and thaere, so that all future ProtoCOULERS write on "ABS® (1077, 1o be exact), which
has a diroct return to microcode, and, apart from the formatting of the instruction to L]
and add, C, is as direct (o vse from microcode as 040 is for MLOL % Oelails of changes 1o
update existing Proto Interfaces to be published seon.

FAT addressing Is wider than was supposed [the SUMD table, thea?]
Also new from Sydney is our leaming from the navigation ROM that the function
address table will locate an address with AMY amount of offset. 5o if the entry 1o ABC
in @ RUM js put In the table as

oA {or 20A)
UHC

then
A (or 20A}
[HE L

will send the polnter to the noxt HOM page up (ROM O, if the table is in Page F), and

BF A jor 2FA)
LBC

to tha next BOM puge doam.

FPC TECHNICAL NOTES 16

Dissembling disavower dissents from dissent

Apart from my interest in a general buffer, and the importance of talking to I-code
through such a thing, I'll leave nost of the corcespondence to Gordon: | generally hate
w:iging {& Ioathe typingl, and in fact balieve rthat all '5.e!f-u-hpre-55im'. includmg
pragramming, (5 a disgustingly infantile activity for which we shall deservedly be put up
against the wall when the Universe revolves. (The trouble sdth Seift was his incarably
tolerant and kindly view of humanity,) The less of it I've pot documented against me the
bt tar, 1 reckeon,

Regards, MNick B703,

B . T Tk i e e T S S S S S S S

Withaul any more ado aboutl something, here b5 Paul m full ery, on November 215t

Dear Wick,

Thanks Eor your letter. John and I hawve read it with
interesc, Whilst your polntsabour seroacch reglscer access are
aceepted, I scil]l think that below the (EMD. [s rhe best place
for thea. For one thi“l‘-: N3 ¥l gall up subroutines which create
scratch registers, you do net have to do all the housekeoping
necesszary to update the program polnter when the reglsters are
shutfled down. However, I toke vour point that apccess muy not be
as easy wheén the EPROM bex is not plupgped in. There iz no need to
have @ machine code routine to perform the scratch register exchange
function wou mentioned in your letter: such & cask is perfect for
1-CODE. Thus I have onclesed the following routine which takes the
two registers at curtain =2 and curtain -3 (could be changed to
eurcaln -1 and curcain -2 etec. wec.) and exehanges chem with my
scratch regiscers S5h and 58 respectively:

Gl+LEL -SMA

P
8z sS-xrY
a3 ICODE
a4 CURTOF
as SET-
A& ADR+=
87 ADR+-
63 GET
a9 =Ly
1@ ARGEX
11 FPUT
12 KLY
13 ADR+=
14 GET
15 ARGEX
16 PUT
17 ¥W%-85
18 EHD

I will leave you to Eigure out how it works! By the way, I think you
received a somewhat prelisinary version of my 1-CORE documencatfon. Apart
from several minor miscakes, che FASH program has been deleted, and in fes
place are roucines to allow the wser te enter & malnframe HOM address wich
cemplete contrel over how to load up the CPU repiscers and CPU [lags. Flus
there is a routine to allow Sh &4-6 o he losded directly [rom the X register
cte. ete, I will send cthe new documentatfon along with application voutines
to any who wish to purchase the EFROM see (535). I also noted your com=ents
regacding your horver of typing. We all have ouwr worries about what we say
on paper which may ineriminate us when ‘The Revolution Comes', MOMEVER,
soeme poer sod has to typd the steil up somewhere along the line, und

that peor tellow has bees Jebn. As sccomdary editor and parcial

business edicer far PPCTH, T have prepared the enclosed metic: which

will ger senl Lo ALL who iransgress the ' neat or typed BUT not scrawled’

FPC TECHNICAL NOTES 416

rule ¥ 50 having said my say, I hasten to add chat all info will be read
with interest, and 1f it is really topical etc. etc. then 1 or Joha will
type it up. But PLEASE £f you can,then type {we will even burn it after
reading Lt Lf it will pravent your zoul being jeopardlsed--John even
offered to eat your magerial, but that was afeer a VERY lgng session of
editing).

tn other topice, glad to hear that Gorden has net deserted the EPAL
seene. We are eagerly awalting more EPROM madness from you all up there.
Things are winding down here st the moment, as many of the club members
areé sitting exams. John and T have just finished a set of CAE courses
which should ennble the club o purchase the IL EPROM burner. I am
looking forvard to commitring my MLI image to the safety of an EFROM ser.
Anyway, L£ 1 romble an any more I'11 get cven more boring, =o L'1l
scop right now,

Cheera,

fa —

Paul Cooper 4910
39 Brisbane S¢,
Agcot Vale 3032

* See below, p.57 for more on this matter.

JIWO KEY ASSIGNMENT HOUTINES FRUM ASSEMBLER 2 mMichael Thompson (8496)

Befare there was ASSEMBLER 3, there were first ASSEMBLER 1 and ASSEMBLER 2. A
fisting of the functicns in ASSEMBLEK 1 was publisned in PPCTH, #13, p.55, and a description of those
of ASSEMHLEK'S 2 and 3 in PPCTN #14, pp.iti-20, as well as in the PPCC), VDN 3PRE-10,

Most of the functions of ASSEMBLEKR 2 were the same as those of ASSEMBLER 3, but it did
include two key assignment functions, entirely in microcode, called ASC and KA, for which there was
no room in the later EFKOM image. In addition, the early versions of ASSEMBLER 2 had sundry bugs
which were purged from the counterpart routings of ASSEMULER 3 before its release. The ald
ASSEMBLER 2 has now boen debugged by Michael, and is available from him at the same price as
ASSEMELER 3, equally wsable with the MLDL, but with room made available by omitting seme of the
finctions, not needed for writing microcode/meods, (For a function listing of ASSEMHLER 2, see
PPCTH 817, p70. The X HOM number of the version you weill Eet from Michae! will not necessarily be
3 - Paul purned me a buy free version at the February meeting, and at my request, changoa its X KOm
I aumber to avold conflict with that of ASSEMBLER 3. The routine listing below, however, was from
an earlier version of ASSEMBLER 2, with the same XHROM 11 as ASSEMBLEK 3, vet had 1o be effected
using ASSEMBELEH 3 routines, Uuite 2 hasslel Becawse of this, the adresses of the following listing
slightly differ frem thosa of the cebugged version.) The routines omitted are; LOADPF, COMPILE,
INSHYTE, STOUYTE, PUTPC, though it does retsin RULBYTE and GETPC, VIEWA and COPYROM.
CLRUM I5 ghere, under the name CLROME. Hesides the ASL and KA, it has ROM>AS and AS3KOM,
taken care of in ASSEMULER 3 in & different manner.

ASC funetions rather like the sephisticated routines Tapanl Tarvainen and Gerard Westen have
bean writing, accepting alpha mnemonics for full symbetic assignments. In operation, execute it just
a5 one does the mainframe ASN, It promgts "ASU °, and now may be used axactly as if it were ASN,
but on pressing ALPHA, it allows, and accepts, such mnemonics as *STO M*, "HCL a*, "I150C 0°, etc,
Un terminating alpha entry, it prompts far a koy, just as does ASM, and once a key is pressed (shifted
or unshifted) the assignment is completed. All valid mainframe prefixes are accepted (5TO, RCL, 5T+,
XEQ, etc.), togather with the now common status postfiaes, oxcept that, as in ASSEMBLER 3, " is
used for the ‘append’ sign. (See the ASSEMELER 3 Manual, p.B.}

KA I3 very like the PPC ROM MK in that it accepts the bytes and keycodes from the stack -
from XK. It Is programmable, unlike ASG., The format is: asa.bbboc, in X, them execute KA, where
aaa is the decimal code for the prefix byte, bbb that for the postfix, and cc is the keycode. Leading
zerces in bbb must be entered (KA 144/87, say, 1o the LN key, must be entered as 14408751, rather
than 144.8751% An invalrd keyoode gives the message *KEYCODE MK, The stack is lifted, and X
is tramsferred to Last X, Use negative values for shifted koys.

It was rather odd to eompile notes for these functicns, and to test them out while sitting in a
camgr van at Apollo Bay in Victoria, about a mile from the place where the first keveode 1o key
assignnwent rogister Lyle routine was wiitlen in 195U (KA 3 or 4, | thisk), Alas for those happy,
innocent synthetic daysl lohn McCochie [3324)

kakakakakakakakakakakakakakakakak

