
HP-41 Rubik’s Cube Solver Module

 Overview

This module includes the programs written by Julian Perry and published in PPCCJ to solve the

Rubik’s Cube. The ROM format allows for a simpler program execution, not restricted by the main

memory space limitations. New routines for data entry are included to define the cube’s initial

configuration, and Extended Memory support is also implemented to store different cubes as ASCII

files.

A new MCODE function has been added for easier and more reliable U/I : the row colors entered as a

three-digit prompt, which only allowed values correspond to the individual color codes, i.e.

“R,G,B,Y,W,O”

The table below shows the function names in pseudo-alphabetical order with a brief description. The

Authors and sources are listed below for a complete program description and user instructions in case

you’re interested. You’re encouraged to read the original articles by Julian Perry for a better

appreciation of the difficulty of the task, and the ingenious solution he came up with.

XROM Function Description Author Source

 8,00

 8,01

 8,02

 8,03

 8,04

 8,05

 8,06

 8,07

 8,08

 8,09

 8,10

 8,11

 8,12

 8,13

 8,14

 8,15

 8,16

 8,17

 8,18

 8,19

-RUBIKS CB

"CUBE1"

"CUBE2"

"RUBIK"

"R1"

"R2”

"S"

"T"

"X"

"Y"

"Z"

^CROW

AINT

CLAXON

E3/3+

GOOSE

LEFT

RASP

RNG

"VREG"

Section header

Example1

Example2

Main Data Entry

Stage -1

Stage-2

Display/Print

Calculate Next Move

Initialize R01-R04 X Axis

Initialize R01-R04 Y Axis

Initialize R01-R04 Z Axis

Enter Color ROW

ARCL Integer

Claxon Sound

Builds pointer

Shows left goose

Moves LCD to the left

Rasping sound

Random number

View Registers

Ángel Martin

Ángel Martin

Ángel Martin

Martin- Perry

Julian Perry

Julian Perry

HJ Gessler

Julian Perry

Julian Perry

Julian Perry

Julian Perry

Ángel Martin

Frits Ferwerda

Mark Power

Ángel Martin

Nelson C. Crowle

Nelson C. Crowle

Mark Power

JM Baillard

Ángel Martin

This project

This Project – see below

This Project – see below

PPCCJ V9N1P30

PPCCJ V9N2P23

PPCCJ V9N2P23

PPCCJ V10N4P3

PPCCJ V9N2P23

PPCCJ V9N2P23

PPCCJ V9N2P23

PPCCJ V9N2P23

This project – see below

MLROM project

DataFile V7N7 p12

SandMath project

NFCROM Project

NFCROM Project

DataFile V7N7 p12

A few M-CODE Routines

RAMPAGE Project

As you can see the modification proposed by HJ Gessler has been added to the original program as

well. This is especially well suited for the execution on V41 and other emulators lacking printer

support – whilst taking full advantage of their turbo speeds. Thanks go also to Jackie Woldering for his

program transcription and barcodes provided in the PPC Barcode project.

http://www.hp41.org/LibView.cfm?Command=Image&ItemID=190&FileID=5070
http://www.hp41.org/LibView.cfm?Command=Image&ItemID=191&FileID=5100
http://www.hp41.org/LibView.cfm?Command=Image&ItemID=191&FileID=5100
http://www.hp41.org/LibView.cfm?Command=Image&FileID=5585
http://www.hp41.org/LibView.cfm?Command=Image&ItemID=191&FileID=5100
http://www.hp41.org/LibView.cfm?Command=Image&ItemID=191&FileID=5100
http://www.hp41.org/LibView.cfm?Command=Image&ItemID=191&FileID=5100
http://www.hp41.org/LibView.cfm?Command=Image&ItemID=191&FileID=5100
http://www.hp41.org/LibView.cfm?Command=View&ItemID=592
http://www.hpcc.org/datafile/datafilev07.html#V7N7
http://www.hp41.org/LibView.cfm?Command=View&ItemID=1164
http://www.hp41.org/LibView.cfm?Command=Image&ItemID=619&FileID=20578
http://www.hp41.org/LibView.cfm?Command=Image&ItemID=619&FileID=20578
http://www.hpcc.org/datafile/datafilev07.html#V7N7
http://hp41programs.yolasite.com/m-code.php
http://www.hp41.org/LibView.cfm?Command=View&ItemID=1169
http://www.hp41.org/LibView.cfm?Command=View&ItemID=1094

Custom sounds (courtesy of Mark Power) replace the traditional BEEP and TONEs for a more diverse

experience. Also as a fun note, during the main program execution the left goose is shown moving

leftwards – so there’s no doubt a left-handed person is working on the cube ;-) We have Nelson F.

Crowle to thank for this light and joyous touch.

Thanks also to Warren Furlow for hosting the referenced material and the actual ROM images on his

excellent web site, www.hp41.org.

Below is a brief description for the most important functions of the module for your convenience –

“RUBIK”: Main program w/ Data Entry

This is the main data entry and cube solving program. The cube can be configured from the scratch

(that’s part of the fun!), or you can provide an ASCII file name to use a cube configuration saved

previously – like the examples provided in the module. If a new cube configuration is entered it will be

saved in X-Memory as well, with a File name of your choice.

 Answer Y/N to determine the case.

For a new Cube, first the File Name is to be entered and then there will be three prompts for each of

the cube faces, FRONT, LEFT, BACK, RIGHT, LOW, and UP. Each one of the 18 prompts will input

the three colors for the row until the full configuration is entered.

For an existing cube stored in an X-Mem file, the program will show each row in the display as it’s

being read from the file.

 Shows the colors “Green-Green-White” for the 3
rd

. row in the

“FRONT” Face

After the calculation of each move, the solution is presented in the display following the Singmaster’s

convention (check original articles provided above) in “chunks” of 12 rotations; like it’s shown below

- with the exception being the transition from “stage1”to stage2”. This was needed for the RAM-based

version of the programs and even if not needed in the ROM module has been left in here only to

maintain the original arrangements.

Once you have performed the group of 12 rotations you need to press R/S to continue solving the cube

until completion.

www.hp41.org

^CROW _ _ _ : Enter Color Row

This function provides the main U/I aid to enter the three colors within a given row. The function

presents a three-digit prompt, and each digit must conform to the allowed characters that represent the

possible colors: “R,G,B,Y,W,O”. No other keys will be accepted.

Pressing Back-Arrow cancels the entry and stops the program execution. At that point you can resume

with R/S and the prompt will be presented again.

Note that even if the colors within a row cannot be mistyped, the data entry will not check for valid

combinations taking into account the previous rows. This however will be checked later on during the

program execution, and an error message will be shown if the configuration is bad.

“CUBE1” and “CUBE2” Examples

These two programs will create and populate ASCII files in X-Memory with two examples to test the

program. You’ll need to execute the corresponding “CUBE” program first to load the data; and then

the main “RUBIK” program as before. The ASCII files will remain in extended memory after

execution and until they are purged by the user.

The solutions to these 2 examples are provided below:

Example1: Solution to the CUBE1 case in 111 MOVES

Move Turns Move Turns

01 F:RDFD,D:FD:U:R:RU: 06 B,U,R,U,RF,LFL,U,L,U

02 R,FU:F,U:LUL,BU:B,U, 07 LUDFD,F,DFD,F,U,D

03 BUB, - stage2 08 FD,F,DFD,F,U,DFD,F,

04 F,U,FURUR,L,U,LUF 09 DFD,F,U:F,U:FRBLU:

05 UF,UB,U,BULUL,BU 10 L,B,R,F:ULR,F:RL,UF:

Example 2: Solution to the CUBE2 case in 99 MOVES

Move Turns Move Turns

01 F,B:U,L:U,B:RUR,FUF, 06 UF,LFL,U,L,ULUDF

02 B,UB – stage2 07 D,F,DFD,F,UFDF,D,F

03 LU,LF:UFU,F:L,U,L,B 08 DF,D,U,L,B,R,URBLF

04 L:ULU,L:B,LU:L,ULU: 09 U,F,L,R:U,FB,R:BF,U,R:

05 L,UB,U,BL,B:U,B,UB:L -

