
SandBox_3D
The Last HP-41 Plug-in Module?

User’s Manual and Quick Reference Guide

Compiled by Ángel M. Martin

December 2003

 2

This compilation

Copyright © 2003 Ángel Martin

Published under the GNU software licence agreement.

Original authors retain all copyrights, and should be mentioned in writing by any party utilizing this
material. No commercial usage of any kind is allowed.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.
See www.hp41.org

 3

Sandbox 3D – The last HP-41 Plug-in Module?

1. Introduction.

The “Sandbox_3D” started as a rescue project, aimed to bring back to life many of the MCODE
functions and routines published in old calculator user groups journals. Its name doesn’t only refer to
the silicon content of the IC’s, but also to the character of experimental ground, employed by the
author as a vehicle to learn MCODE while compiling a sensible collection of functions worth grouping
together and thus adding a permanent value to the HP-41’s legacy.

This module is mainly a tribute to the original authors of the many routines gathered on it, some of
them learning their way into MCODE and willing to share their discoveries with all the user’s
community. Some others with a skilful command of the MCODE art, and yet gracious enough to also
make their work available to the world. This module simply had to be done, for all these wonderful
contributions had but gone forgotten undeservedly!

A very important part of the functions comes from Ken Emery’s “MCODE For Beginners” book, which
to the author’s knowledge remains the single one and only published work for MCODE programming,
and thus an obliged reference to any compilation like this. They were the seed around which the
different sections developed, in an archaeological search that has now concluded.

Soon enough a few themes emerged from the diverse collection of functions: housekeeping utilities,
alpha functions, MLDL functions, math functions, and even fun stuff. This classification allowed the
author the opportunity to write a few new routines to round up the contents of the different sections,
as well as seeking for a few key missing functions from other modules (most importantly the
Hyperbolics from the AECROM module, published by RedShift Software).

The nature of the 41 module architecture soon forced compromises in the choice of functions and the
internal distribution of these. It was quickly apparent that with a limitation of 64 functions per page in
the FAT, there were too many of them to fit even in an 8k module. The author has borrowed the
concept of multi-function, originally used in the HEPAX modules, to partially go around such a
limitation. Note however that while the SandBox’ multifunction implementation allows exceeding the
function limit, it isn’t as powerful as the original, as only one of them is programmable.

Many functions will be for sure quickly recognized by many 41 user, while a few others will come as a
fresh surprise to some. All in all, the author hopes that this compilation, faulty as it might be,
represents an interesting and valuable contribution to the rich and wonderful legacy of the HP-41,
arguably the best calculator system ever produced. Enjoy!

2. Five sections in two pages.

The SandBox is divided in five sections, as follows:

2.1. “Sandbox 3D”: or the General Utilities section.

This section comprises many popular routines never before published as MCODE functions, or not
grouped together in the way they are here. Their scope ranges from the all-popular Key Assignment
utilities (KALNG?, KACLR, KAPCK, LKAON, LKAOFF), to innovative additions to the extended memory
manipulation (CALLXM, CLEM, RSTCHK, XMROOM, ARCLCHR), not forgetting the extended flag control
(FS?S, FC?S, SFX, CFX, TOGF, STOF, RCLF).

Three multi-functions are also included in this section:

- BIT56, grouping many bit manipulation functions that work on all the 56 bits of the registers;
- ST<>ST, for many stack register exchanges (Y<>Z, Y<>T, etc.) and
- XTRABOX, for a group of miscellaneous functions.

 4

A common characteristic of these three is their catalogues, which list the names of all the sub-
functions and then return to the command index prompt. This is a usability enhancement not present
in the HEPAX module, and while a full control of the listing speed and stopping isn’t implemented, a
partial speed control is possible. The catalogues are always accessed with index zero as answer to the
prompts.

On a class by itself is CSST, to display a continuous SST listing of a FOCAL program, regardless
whether it’d be private or not, and both in RAM or ROM memory. Speed control and other subtleties
make it a unique function in all senses.

2.2. “Window Nut”: The Alpha and Display section.

The alpha registers and the display constitute the subject of the 27 functions grouped within this
section. Some classic functions (like XTOAL, A>RG, RG>A, VIEWA) and a few new ones taking
advantage of the Halfnut display capability and extended character set (aVIEW, CHRSET, CTRST,
CTRST?, CNT+, CNT-), sorely missing in the basic machine and any of its subsequently developed
extensions. A few functions for sub-string extraction and character conversion borrow their names and
functionality from their BASIC counterparts (LEFT$, RIGHT$, MID$, LOW$, UPR$).

Question: is a 1-line display enough? (Valid) Answer: it is for many more things that we give it credit
for these days (of inflated fatware and wondrous PC’s)

2.3 “Math Functions”; Semi-advanced and complementary Mathematics.

The original purpose of a calculator is probably that of performing mathematical operations upon
numbers. Even with all its extensions, the 41 system doesn’t comprise the most powerful math set
available in a calculator (such award will probably go to the HP-15C, a masterpiece on its own – see
appendix). The SandBox doesn’t change that fact either, but at least corrects some historical
inequities and brings a few functions to the 41 platform that should have always been there: simple
complex arithmetic (Z+, Z-, Z*, Z/, 1/Z), hyperbolic functions (SINH, COSH, TANH and their inverses,
all from the AECROM), Stack and Registers SORT, Recall Math, and in a class by itself, a super-fast
quadratic equation root finder (QROOT).

Another set of handy routines include determining whether a number is prime, finding its smallest
divisor if not (PRIME?); showing fractions from decimal numbers (DFRAC); and base conversion
functions (T>BS for generic decimal to any base, and H>D, D>H for hex to and from decimal).

2.4 “Hacker Lab”; or where things can get dangerous.

This is the section where MLDL functions are included, as well as a few others for RAM manipulation
(like the wonderful RAMEDIT, RCLB, STOB, X<>B, aNRCL). The ubiquitous Code and Decode
(NNN>HEX, HEX>NNN), direct entry of NNN’s (HEXIN, HXENTRY), and other essential functions to
work with q-ROM and MLDL devices. Of particular interest to MLDL owners would be CHKROM and
SUMROM, to verify and calculate the checksum word, and XQ>XR, to convert global XEQ into XROM
calls (taken from the RAMBOX, published by W&W GmbH).

2.5. “Playground”; or the fun stuff at last.

A handful of functions to provide alternative BEEP tones (CLAXON, RASP), get the calculator to buzz
on CPU activity (BUZZON, NOBUZZ), or a challenging High-Rollers game (ROLLERS) for those precious
relaxing moments...

 5

3. The functions in detail.

The remaining sections of this document describe the usage and utilization of the functions included in
the SandBox Module. While some are very intuitive to use, others require a little elaboration as to
their input parameters or control options, which should be covered here. Reference to the original
author or publication is always given, for additional information that can (and should) also be
consulted.

3.1. Housekeeping Utilities.

Sorted by the following functional groups, loosely defined:-

3.1.1. BIT56 Multi-function.

Multifunction grouping the following bit-manipulation sub-functions:

Index Function Author Description
000 SUBCAT Ángel Martin Lists the sub-functions names with indexes.
001 X+Y Gordon Pegue Bitwise addition of values stored in X and Y; Result left in X
002 Y-X Gordon Pegue Bitwise subtraction of values in X and Y, Result left in X
003 AND Gordon Pegue Logical AND of values in X and Y, Result left in X
004 OR Gordon Pegue Logical OR of values in X and Y, Result left in X
005 NOT Gordon Pegue Logical NOT of values in X and Y, Result left in X
006 RXR Gordon Pegue Rotate right 56-bit field in X one digit (4 bits)
007 RXL Gordon Pegue Rotate Left 56-bit field in X one digit (4 bits)
008 BRXL Gordon Pegue Rotate Left 56-bit field in X one bit w/ wraparound
009 RLN Gordon Pegue Rotate Left 56-bit field in Y N digits, w/ N is in X
010 RRN Gordon Pegue Rotate Right 56-bit field in Y N digits, w/ N in X

Although this function is programmable, when in a program there’s no choice for index, and the
function X+Y will always be executed.

3.1.2. Catalogs and direct access to functions.

BLCAT [Block Catalog] Author: VM Electronics Source: HEPAX Module

Lists the first function of every non-empty ROM block (i.e. Page), starting with Page 3 in the 41 CX or
Page 5 in the other models (C/CV/BlankNut). The listing will be printed if a printer is connected and
user flag 15 is enabled.

No input values are necessary. The displaying can be halted while any key (other than R/S or ON) is
being depressed, resuming its normal speed when it is released again.

ROMCAT [ROM CATalog] Author: J.D.Dodin Source: Au Fond de la HP-41

Lists the functions on the module which XROM number is in X. Once the module is finished, the listing
continues with all the other modules plugged in on pages with higher number than the first one.

 6

XROM [Xeq ROM] Author: Clifford Stern Source: PPCJ V12 N3 p37

A very special prompting function. Allows direct entry of any function included in a plug-in module, by
introducing its XROM number first and then the function number. For example, to call the function
“XTRABOX” you’d input XROM 08,35.

This allows access to ROM header functions, such us “–Sandbox 3d”, (XROM 08,00). Note that while
XROM is not programmable, the function called can be entered into a program, thus it isn’t necessary
that the ROM be present to introduce its corresponding functions.

CSST [Continuous SST] Author: Phi Trinh Source: PPCJ V9 N7 p49

Sequentially displays the program steps of the program pointed at by the Program Counter (PC). It’s
equivalent to using the SST key multiple times, and thus its name. The delay between lines shown can
be adjusted by pressing any keyboard key, see the original source for further details. To use it,
position first the PC at the target location (using GTO or similar).

3.1.3. Buffers and Key Assignment functionality.

BLNG? [Buffer Length Finder] Author: W&W GmbH Source: RAMBOX ROM

Returns the length in registers of the buffer which id# is provided in X. Buffers are created by
different modules (CCD, Advantage, Plotter, etc) for temporary or permanent data storage, and it’s
beyond the scope of this manual to provide further details on their creation and properties.

The following table (necessarily incomplete) lists some of the buffers known:

Buffer id# Module/Eprom Reason
1 David Assembler MCODE Labels already existing
2 David Assembler MCODE Labels referred to
3 Eramco RSU-1B ASCII file pointers
4 Eramco RSU-1A Data File Pointers
5 CCD Module, Advantage Seed, Word Size, Matrix Name
6 Extended IL (Skwid) Accessory ID of current device
7 Extended IL (Skwid) Print Cols, number & width
10 Time Module Alarms information
11 Plotter Module Data and barcode parameters
12 IL Development, CMT-200 IL buffer and monitoring
13 CMT-300 Status Info
14 Advantage INTEG & SOLVE scratch
15 (*) Mainframe Key Assignments

(*) KA area isn’t really a buffer.

KACLR [Clear Key Assignments] Author: HaJo David Source: PPCJ V12 N4 p24

Clears all key assignments presently configured on the USER keyboard. Very similar to CLKEYS
function of the X-Functions module, but with added functionality: it requires the literal string “OK” in
the alpha register to perform the clearing. If the string “OKALL” is found, then not only the KA
registers but all the buffers will be cleared as well.

 7

KALNG? [A Registers size finder] Author: W&W GmbH Source: RAMBOX ROM

Returns the length in registers of the Key Assignment area in RAM memory. It requires no input
values. (Note that this cannot be done with BLNG? above, using 15 in X).

KAPCK [Pack Key Assignments] Author: HaJo David Source: PPCJ V12 N4 p24

Packs the key assignments registers area of the 41 RAM memory. This can recover some registers
held up for key assignments by the calculator but not being used, which frequently occurs after de-
assigning keys.

LKAOFF [Suspends Local KA] Author: Ross Cooling Source: PPCJ V13 N2 p37
LKAON [Reactivates Local KA] Author: Ross Cooling Source: PPCJ V13 N2 p37

LKAOFF Suspends the local key assignment, that is those in the first two rows un-shifted (A-J), plus
the first row shifted (a-e). This permits the usage of these keys as local labels within a program, and
thus not being overwritten by their global assignment.

LKAON Reactivates the Key assignments suspended by LKAOFF. These two functions should be used
together to temporarily suspend and then reactivate the local assignments.

3.1.4. Extended User Flags control.

FS?S [Is Flag Set and Set] Author: Ken Emery Source: PPCJ V11 N6 p11
FC?S [Is Flag Clear and Set] Author: Ken Emery Source: PPCJ V11 N6 p11

Analogous to the mainframe functions FC?C and FS?C, only that the final action is to leave the tested
flag enabled instead of disabled. Like them, the execution skips one program line if false.

SFX [Set Flag by X] Author: Michael Katz Source: HPX V1 N6 p7
CFX [Clear Flag by X] Author: Michael Katz Source: HPX V1 N6 p7

Sets or clears the user flag which number is in the integer part of the value in X. Contrary to the
mainframe built-in functions, they are not limited to the first 30 User flags (0-29).

TOGF [Toggle Flag] Author: Ken Emery Source: PPCJ V11 N6 p11

Toggles the status of the user flag which number is in the integer part of the value in X. Also allows
for any flag to be toggled (0-55)

STOF [STO Flags] Author: Hajo David Source: PPCJ V12 N5 p44
RCLF [RCL Flags] Author: Hajo David Source: PPCJ V12 N5 p44

Identical to the STOFLAG and RCLFLAG functions on the X-Functions module. Stores or recalls the
status of the first 43 user flags into a control string in X. This string can be stored into any data
register for subsequent use with the complementary function.

 8

3.1.5. Expanded Extended Memory control.

CALLXM [Call program in EM] Author: Ross Wentworth Source: PPCJ V12 N3 p48

Transfers program execution to a program in Extended Memory which global label name is stored in
Alpha. The program can be anywhere in EM, but its entire length must be contained within a single
XM module (or the XM included in the XF/M module). All GTO’s must also be precompiled before
hand, or the execution will fail.

CLEM [Clear EM] Author: Hakan Thorngren Source: PPCJ V13 N2 p14

Clears ALL Extended Memory. No input parameter is required.

XMROOM [Extended Memory ROOM] Author: Clifford Stern Source: PPCJ V12 N3 p38

Returns the number of available registers in Extended Memory. Identical to the CX function EMROOM.
No input parameter is required.

RSTCHK [Reset Checksum] Author: Hakan Thorngren Source: PPCJ V13 N2 p14

Resets the checksum byte of a program file in Extended memory. Use it when this byte has been
corrupted and the “CHECKSUM ERR” message is shown when trying to load a program from Extended
Memory to main RAM. Requires the program file name in Alpha as input value.

ARCLCHR [ARCL Characters] Author: Hakan Thorngren Source: PPCJ V13 N7 p19

Appends to alpha the number of characters specified in X from the current ASCII file, starting from
the current pointer position (determined by SEEKPT or SEEPTA). Similar to but much more flexible
than ARCLREC, in the X-Functions module.

3.1.5. Size and location Finders.

BLNG? [Buffer Length Finder] Author: W&W GmbH Source: RAMBOX ROM

See description under section 3.1.3. above.

CRTN? [Curtain location finder] Author: Unknown Source: MMEPROM

Returns to X the absolute address of the curtain (i.e. separation between program and data registers).
No input value is required. The general equation is:

§ Total Registers = Data Regs + Program Regs,

Where: Total Regs=512 on the CV and CX models.

DREG? [Data Registers Finder] Author: Ken Emery Source: MCODE for beginners

Returns to X the number of Data registers allocated by SIZE. Equivalent to the SIZE? Function of the
X-Functions module. No input value is required.

 9

FREG? [Free Registers Finder] Author: Ken Emery Source: MCODE for beginners

Returns to X the number of available (free) program registers in Main Memory. No input value is
required.

SigmaRG? [Statistical Regs Finder] Author: Unknown Source: MMEPROM

Returns to X the register number of the current location of the Statistical Registers, which by default is
11. No input value is required.

FLNG? [Disk File Length] Author: Unknown Source: MMEPROM

Returns to X the length in registers of the (primary) mass storage file which name is specified in
Alpha. If no HP-IL is present on the system an error message will be shown.

3.1.6. Other housekeeping functions.

NNRCL [Non-normalized RCL] Author: Sid Kelly Source: PPCJ V12 N10 p6

Recalls to the X register the value of the data register which number is input in X, without
normalization. Not valid to access the Alpha and Status registers (see “aNRCL” below)

CLRSAF [Clear ALL Rgs and Flags] Author: Gordon Pegue Source: PPCJ V12 N3 p40

Almost a Memory Lost, but without losing any of the program or extended memory contents. Use it
for a quick clear ALL action (Registers, Stack, Alpha, Flags), which requires no input values.

REPLX [Stack Replicate X] Author: J. D. Dodin Source: Au Fond de la HP 41

Replicates the value in X to all stack registers (Y, Z, and T). Like using ENTER^ three times.

SKIPN [Skip N program lines] Author: Erik Blake Source: PPCJ V11 N6 p32

In a running program, unconditionally skips as many program lines as the value in X. Use in
combination with a conditional test to skip as many lines as desired, instead of the standard single
line.

GTEND [Go to .END.] Author: Ken Emery Source: MCODE for beginners

Sends the program counter to the permanent .END. in program memory (the position of the Curtain).

ST>Sigma [Stack to Stat Regs] Author: Zengrange Ltd. Source: ZENROM manual

Stores the values in the stack registers into the statistical registers.

 10

3.1.7. ST<>ST Multifunction.

Another multifunction, this time grouping together diverse stack and alpha register exchange sub-
functions, as follows;-

Index Function Author Description
000 SUBCAT Ángel Martin Lists the sub-functions names with indexes.
001 Y<>Z Ken Emery Exchanges X and Y registers
002 Y<>T Ángel Martin Exchanges Y and T stack registers
003 Y<>L Ángel Martin Exchanges Y and L stack registers
004 Z<>T Ángel Martin Exchanges Z and T stack registers
005 Z<>L Ángel Martin Exchanges Z and L stack registers
006 T<>L Ángel Martin Exchanges T and L stack registers
007 M<>N Ángel Martin Exchanges M and N alpha registers
008 M<>O Ángel Martin Exchanges M and O alpha registers
009 N<>O Ángel Martin Exchanges N and O alpha registers
010 N<>P Ángel Martin Exchanges N and P alpha registers

No input parameters are needed, and pretty much self-explanatory. Although this function is
programmable, when in a program there’s no choice for index, and the function Y<>Z will always be
executed by default. (one at least, better than none).

3.1.8. XTRABOX Multifunction.

Multifunction grouping miscellaneous housekeeping routines. As with the previous case, the default
function when inserted as a program line will be POPADR. The contents is as follows:-

Index Function Author Description
000 SUBCAT Ángel Martin Lists the sub-functions names with indexes.
001 POPADR Hakan Thorngren Pops last return address from return stack
002 X>ROM VM Electronics Fetches ROM word at given address (in NNN)
003 ROM>X VM Electronics Writes ROM word at given address (in NNN)
004 PGCOPY Ángel Martin Copies ROM pages between addresses (in NNN)
005 BUZZON Andres Meyer Sets buzzer on CPU activity
006 NOBUZZ Ángel Martin Clears buzzer on CPU activity
007 LASTRG Eramco System Returns last available register
008 X>$ VM Electronics Numeric value to Alphabetic NNN
009 AVOGADR Ángel Martin Returns Avogadro’s number in X
010 eCHARGE Simon Bradshow Returns electron charge in X
011 ABS W&W GmbH Alpha Back Space

From these, PGCOPY requires a little further explanation. It takes their input parameters from the Y
register (origin page) and the X register (destination page), as binary NNN’s that contain the page
number as absolute addresses in their address fields. See the description of HEX>NNN further down
to find out how to produce such NNN’s from their equivalent HEX codes in Alpha.

AVOGADR and eCHARGE are two “constant” functions, similar to the mainframe’s PI. They return
the Avogadro’s number (6,02214199 E23 mol-1) and the electron’s Charge (1,6021892 E-19), useful in
chemistry and physics problems.

 11

We’ll defer any discussion on BUZZON and NOBUZZ until the last section of the manual, where they’ll
be seen also as independent functions.

All the multifunction catalogs will return to the command prompt after the sub-function listing is
completed, which should have jogged the user’s memory for the index required.

Appendix 1.- Function overlap tables.

V

Value Comparison functions.-

 Flag control and X-Memory Functions.-

Function HP-41 CX SandBox
SF 0-29 √ 0-55
CF 0-29 √ 0-55
TOGF 0-55
FS? √ √ √

FC? √ √ √

FC?C √ √ √

FS?C √ √ √

FC?S √

FC?S √

STOF √ √

RCLF √ √

Function CX CCD SandBox
CLEM √

EMROOM √ √

ARCLCHR √

RSTCHK √

CALLXM √

sREG? √ √

B? √
BLNG? √

GETB √
SAVEB √
KALNG? √

KAPCK √

KACLR √ √

CLBUFS √ √
GETK √
SAVEK √
MRGK √

Function HP-41 CX SandBox
X=Y? √ √ √

X#Y? √ √ √

X>Y? √ √ √
X>=Y? √

X<Y? √ √ √

X<=Y? √ √ √

X=0? √ √ √

X#0? √ √ √

X>0? √ √ √
X>=0? √

X<0? √ √ √

X<=0? √ √ √
X=1? √

X=Y?Z? √

X=NN? √ √

X#NN? √ √

X<NN? √ √

X<=NN? √ √

X>NN? √ √

X>=NN? √ √

 12

3.2. Alpha and Display Functions.

3.2.1. Alpha Utilities.

aVIEW [Lower Case AVIEW] Author: Ángel Martin Source: Sandbox Project

Displays the contents of the alpha registers M and N using lower case characters available in the
Halfnut models. No changes to the actual contents in alpha are made, only to the displayed string. It
leaves unaltered the non-alphabet letters (i.e. numbers and other special chars). Supports a maximum
of 12 chars in the displayed string. No other input parameters are required.

Note that this will obviously not work on the Fullnut models, where the Sandbox header functions will
not be shown as complete, lacking the lower case characters after “e”.

A>RG [Alpha to Registers] Author: Ken Emery Source: MCODE for beginners
RG>A [Registers to Alpha] Author: Ken Emery Source: MCODE for beginners

A>RG Stores the contents of the four alpha registers into a block of 4 consecutive data registers,
beginning at the value in X.

Inverse to the previous function, RG>A restores the values from the data register block into the Alpha
registers. Use these two functions together to temporarily store the alpha registers while being used
in intermediate steps.

A>ST [Alpha to Stack] Author: Ángel Martin Source: Sandbox Project
ST>A [Stack to Alpha] Author: Ángel Martin Source: Sandbox Project

A>ST Stores the content of the Alpha registers into the four stack registers.
ST>A Restores the Alpha registers for the values in the Stack, inverse of the previous one.

No normalization is made. These functions should be used together to temporarily store Alpha while
this is being used in intermediate steps/

AINT [Append Integer Part] Author: Frits Ferwerda Source: ML ROM

Appends to Alpha the integer part of the value in X. Similar to “AIP” in the Advantage Module, or to
“ARCLI” in the CCD Module.

ARCLCHR [ARCL Characters] Author: Hakan Thorngren; Source: PPCJ V13 N7 p19

See description in 3.1.5. above.

AREV [Alpha Reverse] Author: Frans de Vries Sourc: DF V10 N8 p8

Reverses the alpha string, building its mirror image. Two executions return the original string. No
other input parameter is required.

 13

ASUB [Alpha Substitute] Author: Zengrange Ltd. Source: ZENROM manual

Substitutes the character which position is given in Y with the character which code is stored in.
Equivalent to the function “YTOAX” from the Ext-IO module, only with opposite field descriptions
(really “XTOAY”).

CLAX (CLA from Comma) Author: Ángel Martin Source: Sandbox Project

Clears the Alpha register from the position of a comma character and to the right. If more than one
comma character is found, the rightmost is used to define the beginning of the clearing field.

LADEL [Left Alpha Delete] Author: Ross Cooling Source: PPCJ V12 N2 p16
RADEL [Right Alpha Delete] Author: Ross Cooling Source: PPCJ V12 N2 p16

LADEL deletes the leftmost character in alpha. No changes are made to the X register.
RADEL deletes the leftmost character in Alpha. No changes to X are made.

LEFT$ [Left Substring] Author: Ross Cooling Source: PPCJ N13 N2 p8
MID$ [Mid Substring] Author: Ross Cooling Source: PPCJ V12 N2 p29
RIGHT$ [Right Substring] Author: Ross Cooling Source: PPCJ N13 N2 p8

LEFT$ replaces Alpha with the substring defined by the leftmost “n” characters, where “n” is given in
the X register.

MID$ replaces Alpha with a substring defined by the values in X and Y, as follows: X is the beginning
of the string from the left, Y is the length of the substring.

RIGHT$ replaces Alpha with a substring defined by the rightmost “n” characters, where “n” is given in
the X register.

LOW$ [Alpha Lower Case] Author: Ángel Martin Source: Sandbox project
UPR$ [Alpha Upper Case] Author: Mark Power Source: DF V8 N1 p10

LOW$ replaces all upper-case characters found in Alpha by their Lower-case equivalents. Does not
alter non-alphabet letters like numbers or other special chars.

UPR$ replaces all lower-case characters found in Alpha by their upper-case equivalents. It also
removes inverse video and underline bits from the byte values of the characters, if present.

RATOX [Right Alpha to X] Author: Ross Cooling Source: PPCJ V12 N12 p10

Sends to X the code corresponding to the rightmost character in alpha, and deletes it from the alpha
string.

It is the symmetrical function of ATOX from the X-Functions module - which could’ve also been called
LATOX. In fact. similar functions exist in the Ext-IO and HP-IL Dev. Plug-in modules, named XTOAR
and XTOAL respectively. The new name given here to this one is to avoid name duplication. (See
Table-1 in the appendix section for a complete list of the Alpha Functions present in ROM’s).

 14

REMZER [Remove Leading Zeroes] Author: Ross Cooling Source: PPCJ V12 N12 p6

Some functions (like some versions of CODE) return to Alpha a string right-padded with zero
characters. REMZER removes the leading zeroes present in such Alpha strings, i.e. all the rightmost
zero characters if present.

VIEWA [View Alpha non-stop] Author: Ken Emery Source: MCODE for beginners

Analogous to the mainframe AVIEW function, but never stops the program execution (even if user flag
21 is enabled). Use it as alternative to AVIEW.

XTOAL [X to Alpha Left] Author: Hakan Throrngren Source: PPCJ V13 N7 p9

Inverse of ATOX, appends to Alpha as leftmost (i.e. last character), the character which code is in the
X register.

3.2.2. Display Utilities.

CHRSET [Character Set] Author: Chris L. Dennis Source: PPCJ V18 N8 p14

Shows all the characters existing in the complete character set of the calculator. The displaying is
sequential, scrolling as new chars are being added to the shown string.

Halfnut machines have substantially more characters that the Fullnut models, notably the lower-case
letters of the alphabet –which are used by aVIEW as discussed previously.

CTRST [Set Display Contrast] Author: Michael Katz Source: HPX V1 N6 p8
CTRST? [Find Display Contrast] Author: Michael Katz Source: HPX V1 N6 p8

Use these functions to find out the current display contrast setting of your Halfnut machine, and to
modify it accordingly. Possible values are between 0 and 15, and will be returned to X or taken from X
depending on which function is being used.

CNT+ [Increase Contrast] Author: Michael Katz Source: HPX V1 N6 p8
CNT- [Decrease Contrast] Author: Michael Katz Source: HPX V1 N6 p8

Used to increment or decrement in one unit the current display contrast settings. No input parameters
are required. For instance. CNT+ and CNT- would be equivalent to the following combinations:

01 CTRST? 01 CTRST?
02 INCX 02 DECX (See the Math Functions section below)
03 CTRST 03 CTRST

DSTEST [Display Test] Author: Chris L. Dennis Source: PPCJ V18 N8 p14

Simultaneously lights up all LCD segments and indicators of the calculator display, preceded by all the
comma characters. Use it to check and diagnose whether your display is fully functional. No input
parameters are required.

 15

Appendix 2.- Alpha Functions Implementation Comparative Table.

Description 41-CX SANDBOX PANAME CCD EXT I/O DEVIL
Alpha ON AOFF AOFF AOFF AOFF AOFF AOFF
Alpha OFF AON AON AON AON AON AON
Append Reg. X ARCL ARCL ARCL ARCL ARCL ARCL
Store Alpha to Register ASTO ASTO ASTO ASTO ASTO ASTO
View Alpha AVIEW VIEWA AVIEW AVIEW AVIEW AVIEW
Clear Alpha CLA CLA CLA CLA CLA CLA
Clear Display CLD CLD CLD CLD CLD CLD
Prompt for Numbers PROMPT PROMPT PROMPT PROMPT PROMPT PROMPT
View Register VIEW VIEW VIEW VIEW VIEW VIEW
Alpha Shift ASHF ASHF ASHF ASHF ASHF ASHF
Alpha Length ALENG ALENG ALENG - ALENGIO ASIZE?
Alpha Rotate AROT AROT AROT - - -
Position within Alpha POSA POSA POSA - - -
Alpha Num ANUM ANUM ANUM - - -
Alpha Num & Delete - - ANUMDEL - ANUMDEL -
X to Alpha Left - XTOAL XTOAL - XTOAL X-AL
X to Alpha Right XTOA XTOA XTOAR - XTOAR X-AX
Right Alpha to X - RATOX ATOXR - ATOXR A-XR
Left Alpha to X ATOX ATOX ATOXL - ATOXL A-XL
Extract Character - - ATOXX - ATOXX A-XX
Substitute Character - ASUB YTOAX - YTOAX Y-AX
Substring - MID$ SUB$ - - -
Delete Right Character - RADEL - ABSP - -
Delete Left Character - LADEL - - - -
Left Substring - LEFT$ - - - -
Right Substring - RIGHT$ - - - -
Reverse String - AREV - - - -
Alpha Upper Case - UPR$ - - - -
Alpha Lower Case - LOW$ - - - -
Lower Case AVIEW - aVIEW - - - -
Remove Leading Zeros - REMZER - - - -
Alpha to Registers - A>RG - - - -
Registers to Alpha - RG>A - - - -
Alpha to Stack - A>ST - - - -
Stack to Alpha - ST>A - - - -
Append Integer - AINT APPX ARCLI - AIPT
Delete from Comma - CLAX - - - -
Delete from Blank - - - CLA- - -
Alpha Prompt - - - PMTA - -
XTOA in Hex - - - XTOAH - -
Append Entry to Alpha - - - ARCLE - -
Input - - - INPT - -

 16

3.3. Mathematical Functions.

3.3.1. Hyperbolic Functions. © RedShift Software and Wilson Holes.

COSH [Hyperbolic Sine] Author: Nelson F. Crowle Source: AECROM ROM
SINH [Hyperbolic Cosine] Author: Nelson F. Crowle Source: AECROM ROM
TANH [Hyperbolic Tangent] Author: Nelson F. Crowle Source: AECROM ROM

Direct hyperbolic functions. Input value placed in X, return value also left in X. The only difference
with the original set from the AECROM is that these here will store the original value (the function’s
argument) into the LASTX register, while those in the AECROM will not.

The formulas used are the well known defining expressions:

sinh x = [exp(x) – exp(-x)]/2
cosh x = [exp(x) + exp(-x)]/2
tanh x = sinh x / cosh x

ACOSH [Inverse Hyp. Sine] Author: Nelson F. Crowle Source: AECROM ROM
ASINH [Inverse Hyp. Cosine] Author: Nelson F. Crowle Source: AECROM ROM
ATANH [Inverse Hyp. Tangent] Author: Nelson F. Crowle Source: AECROM ROM

Inverse hyperbolic functions. Input value placed in X, return value also left in X. The only difference
with the original set from the AECROM is that these here will store the original value (the function’s
argument) into the LASTX register, while those in the AECROM will not.

The formulas used are the well known defining expressions:

 asinh x = Ln[x + sqrt(x^2 + 1)]
 acosh x = Ln [x + sqrt(x^2 – 1)]
 atanh x = Ln [(1+x)/(1-x)] / 2

3.3.2. Base Conversion and special viewer functions.

D>H [Decimal to HEX] Author: William Graham Source: PPCJ V12 N6 p19
H>D [HEX to Decimal] Author: William Graham Source: PPCJ V12 N6 p19

D>H will convert the decimal number in X into a hexadecimal number placed in Alpha, and it displays
its content when done (so there’s no need to switch the alpha mode on).
H>D will convert the hexadecimal number in Alpha into its decimal equivalent placed in X.

T>BS [Decimal to Base] Author: Ken Emery Source: MCODE for beginners

T>BS will convert decimal numbers (i.e. base TEN) into any other numeric base, lower than 37. If
bases greater than 36 are attempted, an error message will be shown.
To use it, place the base number in Y, and the decimal number to convert to it into the X register. The
result will be shown in the display, but not stored into Alpha.

 17

DFRAC [Decimal to Fraction] Author: Frans de Vries Source: DF V9 N7 p8

Shows in the display the smallest possible fraction that results in the decimal number in X, for the
current display precision set. Change the display precision as appropriate to adjust the accuracy of the
results. It uses the same algorithm as the PPC ROM “DF”.

VMANT [View Mantissa] Author: Ken Emery Source: MCODE for beginners

Shows in the display the full mantissa of the number in the X register, 10 digits without exponent.

3.3.3. Sorting and performing Auxiliary Calculations.

REGSORT [Registers Sort] Author: HaJo David Source: PPCJ V12 N5 p44

Sorts the contents of the registers specified in the control number in X, defined as: bbb,eee, where
“bbb” is the begin register number and “eee” is the end register number. If the control number is
positive the sorting is done in ascending order, if negative it is done in descending order.

STSORT [Stack Sort] Author: David Phillips Source: PPCJ V12 N2 p13

Sorts in descending order the contents of the four stack registers, X, Y, Z and T. No input parameters
are required.

DECX [Decrement X] Author: Ross Cooling Source: PPCJ V12 N12 p21
INCX [Increment X] Author: Ross Cooling Source: PPCJ V12 N12 p21

Convenient substitutes for 1+ and 1-, these functions will decrement or increment by one the current
content of the X register. Also used instead of ISG X and DSE X, when there’s no desire to branch the
program execution even if the boundary condition is reached: this saves a NOP line placed right after
the conditional instruction.

E3/E+ [Decimal to Fraction] Author: Frans de Vries Source: DF V9 N7 p8

Divides the value in X by 1,000 and adds one to the result. Very useful to build matrix indices, and to
speed up repetitive calculations that appear very frequently.

GEULER [Gamma constant] Author: Ángel Martin Source: Sandbox project

Places in X the value of the Euler’s gamma constant with 10-digit precision: 5,772156649 E-01
The stack lift is enabled, allowing for normal RPN-style calculations.

3.3.4. Alea jacta est… or the rest of the best.

RAND [Random Number] Author: Ken Emery Source: MCODE for beginners

Uses the fractional part of the number in the X register as a seed to generate a random number from
it. It uses the same algorithm as the PPC ROM routine RN, thus should yield the same results as that
one when using the same seeds.

 18

PRIME? [Prime Number Finder] Author: Jason DeLooze Source: PPCJ V11 N7 p30

Determines whether the number in the X register is Prime (i.e. only divisible by itself and one). If not,
it returns the smallest divisor found and stores the original number into the LASTX register. YES or NO
are shown depending of the result.

When in a program, the execution will skip one step if the result is false (i.e. not a prime number),
enabling so the conditional branching options.

Example program:- The following routine shows the prime numbers starting with 3, and using
diverse Sandbox Math functions.

01 LBL “PRIMES” 05 PRIME? 09 INCX
02 3 06 VIEW X <yes> 10 GTO 00
03 LBL 00 07 X#Y? <no> 11 END
04 RPLX 08 LASTX

QREM [Quotient Remainder] Author: Ken Emery Source: MCODE for beginners

Calculates the Remainder “R” and the Quotient “Q” of the Euclidean division between the numbers in
the Y (dividend) and X (divisor) registers. Q is returned to the Y registers and R is placed in the X
register. The general equation is:

 Y = Q X + R,
where both Q and R are integers.

QROOT [Quadratic Eq. Roots] Author: Ángel Martin Source: Sandbox project

Given the quadratic equation: aX^2 + bx + c = 0, this function calculates its two solutions (or roots).
Input the coefficients into the stack registers Z, Y, and X using: a ENTER^ b ENTER^ c

The roots are obtained using the well-known formula: X1,2 = -b/2a +- sqrt[(-b/2a)^2 – c/a]
Upon execution, X1 will be left in Y and X2 will be left in X.

If the argument of the square root is negative, then the roots Z1 and Z2 are complex and conjugated
(symmetrical over the X axis), with Real and Imaginary parts defined by:

Re(Z) = -b/2a Z1 = Re(Z) + i Im(Z)
Im(Z) = sqrt[abs((-b/2a)^2 –c/a)] Z2 = Re(Z) – i Im(Z)

Upon execution, Im(Z) will be left in Y and Re(Z) will be left in X.

If the roots are real, the function sounds a high-pitch short tone. If the roots are complex, the
function sounds a low-pitch short tone and places a zero in the Z register. In a program, the execution
will skip one step if the roots are complex, enabling so as well conditional branching.

Example program:- The following routine presents the equation roots in Alpha, according to their
Real or Complex nature. It assumes that the coefficients are stored on the stack as specified before.

01 LBL “QUAD” 06 ARCL X 11 LBL 00 <Real> 16 ARCL X
02 QROOT 07 “@#” 12 “X1=” 17 LBL 01
03 GTO 00 <Real> 08 ARCL Y 13 ARCL Y 18 PROMPT
04 FIX 2 <Complex> 09 “@)” 14 PROMPT 19 END
05 “Z=(” 10 GTO 01 15 “X2=”

Solved for x^2 – 3x + 2 = 0 it returns: X1=2 and X2=1
Solved for x^2 + x + 1 = 0 it returns: Z=(-0,5 # 0,87)

 19

SIGNUM [Numeric SIGN] Author: Ross Cooling Source: PPCJ V12 N12 p31

Like the mainframe SIGN function, but returning zero for null arguments. Input value is the argument
in the X register, which is also stored in LASTX.

3.3.5. Recall Math and Additional Comparison functions.

RCL+ [RCL Plus] Author: Ross Cooling Source: PPCJ V14 N4 p16
RCL- [RCL Minus] Author: Ross Cooling Source: PPCJ V14 N4 p16
RCL* [RCL Times] Author: Ross Cooling Source: PPCJ V14 N4 p16
RCL/ [RCl Divide] Author: Ross Cooling Source: PPCJ V14 N4 p16

RCL math between the Y register and the register which number is specified in X. It performs the
corresponding operation, leaving the result in X and storing the original value in Y into the LASTX
register. The value in the register specified by X is not changed.

X>=Y? [Is X>=Y?] Author: Ken Emery Source: MCODE for beginners
X>=0? [Is X>=0?] Author: Ángel Martin Source: Sandbox project

X>=Y? compares the values of the X and Y registers, skipping one line if false.
X>=0? compares with zero the value in the X register, skipping one line if false.

These functions are arguably “missing” on the mainframe set; a fact partially corrected with the
indirect comparison functions of the CX model (X>=NN?), but unfortunately not quite the same.

X=1? [Is X=1?] Author: Nelson F. Crowle Source: NFC ROM

A quick and simple way to check whether the value in X equals one. As usual, program execution
skips one step if the answer is false.

X=Y?Z? [Is X=Y? or Z?] Author: Ken Emery Source: MCODE for beginners

Double comparison, first between the values in the X and Y registers, and if false between the values
contained in the X and Z registers. Execution will skip one step if the first condition only isn’t met, and
two steps if both conditions aren’t met.

3.3.6. Complex Arithmetic.

Z+ [Complex Addition] Author: Ángel Martin Source: Sandbox project
Z- [Complex subtraction] Author: Ángel Martin Source: Sandbox project
Z* [Complex Multiplication] Author: Ángel Martin Source: Sandbox project
Z/ [Complex Division] Author: Ángel Martin Source: Sandbox project

These functions will calculate the resulting complex number Z of the corresponding operation (+, -, *,
/) between two arguments. The input values are the Real and Imaginary parts of the operands Z1 and
Z2, stored in the stack as follows:

T: Im(Z1) T: Im(Z1)
Z: Re(Z1) Operation Z: Re(Z1)
Y: Im(Z2) -------------à Y: Im(Z)
X: Re(Z2) X: Re(Z)

 20

Note that one of the arguments (Z1) is kept in its original location of the stack, while the other (Z2) is
replaced (and consequently lost) by the result of the operation (Z). Note also that the Alpha register is
used as scratch registers, and thus its previous contents will be lost.

The formulas used are:

 (a + bi) + (c + di) = (a + c) + (b + d) i
 (a + bi) - (c + di) = (a - c) + (b - d) i
 (a + bi) (c + di) = (ac – bd) + (ad + bc) i
 (a + bi)/(c + di) = [(ac + bd)/(c^2 + d^2)] + [(bc – ad)/(c^2 + d^2)] i

1/Z [Complex Inversion] Author: Ángel Martin Source: Sandbox project

Calculates the inverse complex number of a given one (Z0), which imaginary and real parts are stored
in Y and X respectively. The resulting imaginary and real parts will replace the original argument’s as
per the scheme below:

Y: Im(Z0) 1/Z Y: Im(Z)
X: Re(Z0) -------------à X: Re(Z)

The formula used is:

 1 / (x + yi) = [x / (x^2 + z^2)] – [y / (x^2 + z^2)] i

Example program:- Write a user code routine to calculate the Sine, Cosine and Tangent of a
complex number Z=(x + yi), making use of the expressions:

sin z = sin x cosh y + i cos x sinh y tan z = sin z / cos z
cos z = cos x cosh y - i sin x sinh y

01 LBL “ZSIN” 16 LBL “ZCOS“ 32 LBL “ZTAN” 45 LBL “ZOUT”
02 STO M 17 STO M 33 SF 02 46 FIX 2
03 COS 18 SIN 34 RAD 47 “Z=(“
04 X<>Y 19 X<>Y 35 XEQ “ZCOS” 58 ARCL X
05 STO N 20 STO N 36 X<>Y 49 “@#”
06 SINH 21 SINH 37 STO O 50 ARCL Y
07 * 22 * 38 X<>Y 51 “@)”
08 RCL M 23 CHS 39 RCL N 52 PROMPT
09 SIN 24 RCL M 40 RCL M 53 END
10 RCL N 25 COS 41 XEQ “ZSIN”
11 COSH 26 RCL N 42 RCL O
12 * 27 COSH 43 R^
13 FS? 02 28 * 44 Z/
14 RTN 29 FS? 02
15 GTO “ZOUT” 30 RTN

 31 GTO “ZOUT”

Where the program assumes RAD mode is enabled, and that the input is done according to the
defined process above: Im(Z) in Y and Re(Z) in X. Note that no Data Registers are used.

Solved for Z = (2 + 3i) it returns: SIN Z=(9,15 # -4,17); COS Z = (-4,19 # -9,11)
Solved for Z = (0.25 + 0.25i) it returns: TAN Z = (0,24 # 0,26)

 21

Appendix 3.- Mathematical Functions Implementation Comparison Table.

Function HP41 Math Pac Advantage AECROM SANDBOX PPC
SIN MCODE MCODE MCODE MCODE MCODE MCODE
COS MCODE MCODE MCODE MCODE MCODE MCODE
TAN MCODE MCODE MCODE MCODE MCODE MCODE
ASIN MCODE MCODE MCODE MCODE MCODE MCODE
ACOS MCODE MCODE MCODE MCODE MCODE MCODE
ATAN MCODE MCODE MCODE MCODE MCODE MCODE
SINH - FOCAL (FOCAL) MCODE MCODE -
COSH - FOCAL (FOCAL) MCODE MCODE -
TANH - FOCAL - MCODE MCODE -
ASINH - FOCAL - MCODE MCODE -
ACOSH - FOCAL - MCODE MCODE -
ATANH - FOCAL - MCODE MCODE -
CURVFIT - - FOCAL MCODE - FOCAL
DIFEQ - FOCAL FOCAL - - -
FOURIER - FOCAL - - - -
INTEG - FOCAL MCODE - - FOCAL
QROOT - (FOCAL) (FOCAL) - MCODE -
PROOT - FOCAL FOCAL - - -
SOLVE - FOCAL MCODE - - FOCAL
MDET - FOCAL MCODE - - -
MINV - FOCAL MCODE - - -
MTRNP - FOCAL MCODE - - -
MSYS - FOCAL MCODE - - -
ZMOD MCODE FOCAL FOCAL MCODE MCODE FOCAL
Z+ - FOCAL FOCAL - MCODE FOCAL
Z- - FOCAL FOCAL - MCODE FOCAL
Z* - FOCAL FOCAL - MCODE FOCAL
Z/ - FOCAL FOCAL - MCODE FOCAL
1/Z - FOCAL FOCAL - MCODE -
LNZ - FOCAL FOCAL - - FOCAL
LOGZ - FOCAL FOCAL - - -
e^Z - FOCAL FOCAL - - FOCAL
Z^W - FOCAL FOCAL - - FOCAL
Z^1/W - FOCAL FOCAL - - -
SINZ - FOCAL FOCAL - (FOCAL) FOCAL
COSZ - FOCAL FOCAL - (FOCAL) FOCAL
TANZ - FOCAL FOCAL - (FOCAL) (FOCAL)
ASINZ - - - - - -
ACOSZ - - - - - -
ATANZ - - - - - -
SINHZ - - - - - -
COSHZ - - - - - -
TANHZ - - - - - -
ASINHZ - - - - - -
ACOSHZ - - - - - -
ATANHZ - - - - - -

 22

3.4. MLDL and Special Functions.

3.4.1. Peeking and Poking.

aNRCL [absolute NRCL] Author: Ken Emery Source: MCODe for beginners

Complementary to NNRCL in that it also recalls the contents of the registers without normalization,
but more powerful because it uses the absolute address instead of the register number as input in X.
Thus it is possible to recall anything from Mail memory, including status registers (from 0 to 17),
buffers and Key Assignment areas, and even Extended-Memory registers as well.

RCLB [Recall Byte] Author: Mark Power Source: DF V7 N8 p24
STOB [Store Byte] Author: Mark Power Source: DF V7 N8 p24
X<>B [Exchange Byte] Author: Mark Power Source: DF V7 N8 p24

Byte-level functions to read, write or exchange values into/from Main and Extended Memory. Input
parameters are: the byte value in X and the address in M, in ZENROM format. This consists of two
alpha characters which corresponding hex codes represent the memory address.

RAMEDIT [Ram Editor] Author: Hakan Thorgren Source: PPCJ V13 N4 p26

This function sets the calculator in RAM Editor mode. When invoked from the keyboard, it can take
the start absolute address either from the decimal value stored in X, or from a right-justified NNN with
the binary address in it. When invoked from a program it takes it from the current position of the
program counter.

In either case, the display shows the register and nybble being edited, as well as the contents of the
complete register. The cursor can be moved to the left and right with the USER and PRGM keys
respectively, and the current digit where it’s positioned on will blink on the display.

Direct editing is possible using the redefined hex keyboard. Continuing to scroll in either direction
shifts the cursor to the beginning or end of the register (indicated with a short warning tone), but
doesn’t move up or down to the adjacent registers. Use the “+” and “–“ keys to actually move to the
following or previous registers.

The input sequence terminates by pressing R/S or the back arrow key, which exits the RAM editing
mode.

3.4.2. Conversions with a twist.

BCD>BIN [Binary to BCD] Author: Ken Emery Source: MCODE for beginners
BIN>BCD [BCD to Binary] Author: Ken Emery Source: MCODE for beginners

Converts between binary and BCD. Used internally also as subroutines for other functions.

 23

HEX>NNN [Decode] Author: Ken Emery Source: MCODE for beginners
NNN>HEX [Code] Author: Clifford Stern Source: MCODE for beginners

The Sandbox version of the well-known CODE and DECODE functions. Their usage is probably known
to every 41 user, as they’ve been around for a long time, not the least important included already in
the PPC ROM (routines “NH” and “HN”).

Simply enter the HEX code in Alpha and execute HEX>NNN to obtain (code) the equivalent binary
NNN in X. NNN>HEX will decode the NNN in X into the HEX code in Alpha, and (contrary to other
implementations of this function) without leading zeroes (i.e. no left-padding).

HXENTRY [Hex Entry] Author: Ken Emery Source: MCODE for beginners
HEXIN [Hex Input] Author: Hakan Thorgren Source: PPCJ V13 N4 p13

Direct entry of Non-normalized numbers using its byte’s HEX codes. Similar to CODE but interactive.
HEXIN allows for a prompt message, if the alpha register contains any string before the function is
executed. HXENTRY stores the input code into Alpha as well as returning the NNN into X. Both enable
only the keys of the HEX keyboard (0-9 and A-F).

HEX>VSM [Hex to VASM Oct] Author: Ken Emery Source: MCODE for beginners
VSM>HEX [VASM Oct to HEX] Author: Ken Emery Source: MCODE for beginners

Routines to convert ROM address between HEX and the VASM Octal format used by HP. Input fields
are automatically separated by the function, and the keyboard only admits numbers appropriate of the
origin base (Hex or Octal).

3.4.3. MLDL Utilities.

GETW [Get Word] Author: Ángel Martin Source: Sandbox project

Reads the ROM word which address is in the address field of the binary NNN stored in X, and returns
its value into the word field of the same binary NNN in X.

Example program:- This short routine prompts for the absolute address in HEX and returns the HEX
value of the word read at such a given address.

01 LBL “READW” 07 NNN>HEX
02 16 08 3
03 WSIZE 09 RIGHT$
04 “aADR=?” 10 VIEWA
05 PMTH 11 END
06 GETW

Assuming the SandBox Module is plugged in port 1, execute READW with aADR=8000 to obtain its
XROM number value: 008 (Note: PMTH and WSIZE are from the CCD Module. You can replace lines 02, 03
and 05 with: 4 HPROMPT if you use the HEPAX module, keeping line 04 as is).

CHKROM [Check ROM] Author: HP Co. Source: HP-IL Devel ROM

This function tests the ROM with XROM number in X, to verify whether the value of its checksum word
is correct. Input value is the XROM number, and the result is a message with the words “OK” or
“BAD”. The ROM id# is also shown while performing the calculation. (Sum of all word values, MOD
256).

 24

SUMROM [Sum ROM] Author: George Ioannou Source: DF V3 N1 p10

Calculates the ROM Checksum and writes its value into the last word of the page being summed.
Prompting function requests the page address (8 to F), to be input on the blinking field.

XQ>XR [XEQ to XROM] Author: W&W GmbH Source: RAMBOX ROM

For a user code program which name is in Alpha, this function changes all the global XEQ lines calling
other programs in the q-RAM space, converting them into their XROM equivalent.

Use it once the function allocation and FAT is completed, as it will refer to the XROM and function
numbers, instead to performing a label search based on the actual name. Execution of the program
will be much faster, as the mentioned search will be avoided.

3.4.4. Miscellaneous Hacker Tools.

FDATA [Function Data] Author: Klaus Huppertz Source: Prisma, Jan-90

Shows the FAT address and XROM value (the one used for key assignments) of the function input into
the function’s Alpha prompt. It works equally for mainframe functions, User Code programs in RAM,
and MCODE functions in ROM.

Despite being an Alpha prompt function when invoked from the keyboard, FDATA is also
programmable: when in a program, the function name will be taken from the Alpha register!

ROMIN [ROM In] Author: Warren Furlow Source: www.hp41.com
ROMOUT [ROM Out] Author: Warren Furlow Source: www.hp41.com

These two functions will write a ROM file to the HP-IL Mass Storage unit (ROMOUT), and will read it
back from it into the page number specified at the execution. If no HP-IL is present an error message
will be shown.

MNF [Mainframe Function] Author: Clifford Stern Source: PPCJ V12 N3 p37

This function prompts for a three-digit input representative of any mainframe function, as per the
codes contained in the HEX Byte tables. Note that some values will invoke strange synthetic routines.

The following table shows some of the functions and their corresponding suffixes. Note how MFN
conveniently accesses many of the non-programmable mainframe functions.

MFN Suffix Mainframe Function
000 CAT_
006 SIZE _ _ _
002 DEL _ _ _
003 CLP _
010 PACK
015 ASN _

MemLost [Polling Point] Author: Ken Emery Source: MCODE for beginners

Finally, register allocation will be of 26 data registers after Memory Lost.

 25

3.5. Entertainment & Fun stuff.

The few remaining functions deal with alternative sounds and even include one game programmed in
MCODE (by far the longest piece of code in the SandBox!). Not to be taken too seriously, it stills
provides a playground for those of us who’ll never completely grow into adulthood…

BUZZON [Buzz On] Author: Andreas Meyer Source: Cursor Magazine
NOBUZZ [Buzz Off] Author: Ángel Martin Source: Sandbox project

These functions activate and deactivate the buzzing mode upon CPU activity. Keep it mind that this
isn’t supposed to be active for long times, or otherwise damage to the calculator beeper could be
made.

CLAXON [Alternative BEEP] Author: Mark Power Source: DF V7 N7 p12
RASP [Alternative BEEP] Author: Mark Power Source: DF V7 N7 p12

Two other acoustic signals to use instead of BEEP (which admittedly is getting boring after all these
years…). Use discretionally as per your programming needs.

ROLLERS [High Rollers] Author: Ross Cooling Source: PPCJ V14 N4 p31

MCODE version of the popular High Rollers game.

The player starts the game with a string of digits from 1 to 9. Each turn two digits are offered by the
calculator, which has kindly rolled the dice for you. These two numbers should be used to remove
some of the digits in the original string by using any combination of their sum (which must equal the
removed ones).

The game ends when all digits have been removed (you win) or when no digit can be removed (you
lose). Doubles are saved as extra throws, shown after a colon in the left side of the display. Mind you,
it’s not that easy to win!

Power ON [Polling Point] Author: Ángel Martin Source: Sandbox project
Power OFF [Polling Point] Author: Ángel Martin Source: Sandbox project

Finally, the SandBox displays two messages upon power on and power off. The first one is a greetings
note, hopefully inviting the use of the system with a friendly touch. The second one is a “No Worries”
Aussie-like farewell, inviting to come back at the user’s convenience…

 26

 27

4. Quick Reference Guide.

Fnc# Function Name Description Input Output Author Source
1 -Sandbox 3d Header None Shows "Welcome" in Alpha Ángel Martin SANDBOX Project
2 BIT56 Multi-Function Sub-Function index Performs Sub-function Ángel Martin SANDBOX Project

2,0 CATALOG Sub-functions Catalogue (i=00); none Lists Function Names Ángel Martin SANDBOX Project
2,1 X+Y Bitwise Addition (i=01); X and Y X+Y Gordon Pegue PPCJ V2 N5 p38
2,2 Y-X Bitwise Subtraction (i=02); X and Y Y-X Gordon Pegue PPCJ V2 N5 p38
2,3 AND Logical AND (i=03); X and Y X AND Y Gordon Pegue PPCJ V2 N5 p38
2,4 OR Logical OR (i=04); X and Y X OR Y Gordon Pegue PPCJ V2 N5 p38
2,5 NOT Logical NOT (i=05); X Not X Gordon Pegue PPCJ V2 N5 p38
2,6 RXR Rotate x bits Right (i=06); X: number of bits Bit Rotation Gordon Pegue PPCJ V2 N5 p38
2,7 RXL Rotate x bits Left (i=07); X: number of bits Bit Rotation Gordon Pegue PPCJ V2 N5 p38
2,8 BRXL Rotate Block Right (i=08); X: number of digits Block Rotation Gordon Pegue PPCJ V2 N5 p38
2,9 RLN Rotate Left N digits (i=09); Digit Rotation Gordon Pegue PPCJ V2 N5 p38

2,10 RRN Rotate Right N digits (i=10); Digit Rotation Gordon Pegue PPCJ V2 N5 p38
3 BLCAT Blocs Catalogue None Catalogues all Pages VM Electronics HEPAX ROM
4 BLNG? Buffer Length Finder None Number of registers used W&W GmbH RamBox
5 CALLXM Call XM Program File Name in Alpha Program will execute Ross Wentworth PPCJ V12 N3 p48
6 CFX Clear Flag by X Flag number in X Clears Flag Michael Katz HPX V1 N6 p7
7 CLEM Clear EM None EM deleted Hakan Thorngren PPCJ V13 N2 p14
8 CLRSAF Clear ST, REG, Alpha, Flags None CLX + CLA + CLREG + 0 X<>F Gordon Pegue PPCJ V12 N3 p40
9 CRTN? Curtain Finder None Curtain Address N/A MMEPROM

10 CSST Continuous SST Program Pointer positioned. Program lines displayed Phi Trinh PPCJ V9 N7 p49
11 DREG? Data Registers Finder None Current Size Ken Emery MCODE For beginners
12 FC?S Is flag Clear and Set Flag number in X Like FC?C Ken Emery PPCJ V11 N6 p11
13 FLNG? Disk File Length File Name in Alpha File Length in X N/A MMEPROM
14 FREG? Free Registers Finder None Available Main Memory registers Ken Emery MCODE For beginners
15 FS?S Is Flag Set and Set Flag number in X Like FS?C Ken Emery PPCJ V11 N6 p11
16 GTEND Go to .END. None Positions pointer on .END. Ken Emery MCODE For beginners
17 KACLR Clear Key Assignments OK or OKALL in Alpha Deleted buffer(s) Hajo David PPCJ V12 N4 p24
18 KALNG? KA Length Finder None Number of registers used W&W GmbH RamBox
19 KAPCK Pack Key Assignments None Packed KA buffer Hajo David PPCJ V12 N4 p24
20 LKAOFF Suspend Local KA None Deactivates A-J assignments Ross Cooling PPCJ V13 N2 p37
21 LKAON Activate local KA None Reactivates A-J assignments Ross Cooling PPCJ V13 N2 p37

 28

Fnc# Function Name Description Input Output Author Source
22 NNRCL NNN Recall Register Number in X Register contents in X Sid Kelly PPCJ V12 N10 p6
23 RCLF Recall Flags Status None Flag Status string in X Hajo David PPCJ V12 N5 p44
24 REPLX Stack Replicate Value in X Fills the stack with X J.D. Dodin Au fond de la HP-41
25 ROMCAT ROM Catalogue ROM ID# in X Catalogues ROM functions J.D. Dodin Au fond de la HP-41
26 RSTCHK Reset Checksum File Name in Alpha Resets the Checksum byte Hakan Thorngren PPCJ V13 N2 p14
27 SFX Set Flag by X Flag number in X Sets Flag in X Michael Katz HPX V1 N6 p7
28 SKIPN Skip N Steps Number of lines in X Skips N lines Erik Blake PPCJ V11 N6 p32
29 ST>Sigma Stack to SREG Stack full Stores Stack into Sigma Regs Zengrange ZENROM Manual
30 ST<>ST Multi-Function Sub-Function index Performs Sub-function Ángel Martin SANDBOX Project

30,0 CATALOG Sub-functions Catalogue (i=00); none Lists Function Names Ángel Martin SANDBOX Project
30,1 Y<>Z Exchange Y and Z (i=01); Y=y; Z=z Y=z; Z=y Ken Emery MCODE For beginners
30,2 Y<>T Exchange Y and T (i=02); Y=y; T=t Y=t; T=y Ángel Martin SANDBOX Project
30,3 Y<>L Exchange Y and L (i=03); Y=y; L=l Y=l; L=y Ángel Martin SANDBOX Project
30,4 Z<>T Exchange Z and T (i=04); Z=z; T=t T=z; Z=t Ángel Martin SANDBOX Project
30,5 Z<>L Exchange Z and L (i=05); Z=z; L=l Z=l; L=z Ángel Martin SANDBOX Project
30,6 T<>L Exchange T and L (i=06); T=t; L=l T=l; L=t Ángel Martin SANDBOX Project
30,7 M<>N Exchange M and N (i=07); M=m; N=n M=n; N=m Ángel Martin SANDBOX Project
30,8 M<>O Exchange M and O (i=08); M=m; O=o M=o; O=m Ángel Martin SANDBOX Project
30,9 N<>O Exchange N and O (i=09); N=n, O=o N=o, O=n Ángel Martin SANDBOX Project

30,10 N<>P Exchange N and P (i=10); N=n, P=p N=p, P=n Ángel Martin SANDBOX Project
31 STOF Store Flags Status Flag Status string in X Changes flags 0-43 Hajo David PPCJ V12 N5 p44
32 TOGF Toggle Flag Flag number in X Toggles the flag Ken Emery PPCJ V11 N6 p11
33 XMROOM EM Room None Available EM registers Clifford Stern PPCJ V12 N3 p38
34 XROM Input XROM function Promps for RR:FF Executes the function Clifford Stern PPCJ V12 N3 p37
35 SigmaRG? Stat Regs Finder None Stat Regs Address N/A MMEPROM
36 XTRABOX Multi-Function Sub-Function index Performs Sub-function Ángel Martin SANDBOX Project

36,0 CATALOG Function Catalogue (i=00); none Lists Function Names Ángel Martin SANDBOX Project
36,1 POPADR POP Return Address (i=01); none Destroys First Return Address Hakan Thorngren PPCJ V13 N2 p14
36,2 X>ROM Write to ROM (i=02); aaaawww as NNN Writes word in ROM VM Electronics HEPAX Manual
36,3 ROM>X Read from ROM (i=03); aaaa000 as NNN Places NNN ROM word in X VM Electronics HEPAX Manual
36,4 PGCPY Page Copy (i=04); Y:Source, X:Destination Copies Source into Destination Ángel Martin SANDBOX Project
36,5 BUZZON Buzz Mode On (i=05); none Sets buzzer on Andreas Meyer Cursor N.2/89 p14
36,6 NOBUZZ Buzz Mode Off (i=06); none Sets buzzer off Ángel Martin SANDBOX Project
36,7 LASTRG Last Register (i=07); X: Register number Register Value Eramco System MLOS-1A ROM

 29

Fnc# Function Name Description Input Output Author Source
36,8 X>$ Numeric to Alpha Data (i=08); X: Value Value as Alpha Data VM Electronics HEPAX ROM
36,9 AVOGADR Avogadro's Number (i=09); none 6,02214199 E23 Ángel Martin SANDBOX Project

36,10 eCHARGE Electron's Charge (i=10); none 1,6021892 E-19 Simon Bradshow DF V6 N6 p12
36,11 ABS Alpha Back Space (i=11); none Deletes Rightmost Character W&W GmbH CCD ROM

37 -Window Nut Header None Shows "No Worries" in Alpha Ángel Martin SANDBOX Project
38 aVIEW Lower Case AVIEW Alpha String (<13 Chrs) Shows ALPHA in Lower Case Ángel Martin SANDBOX Project
39 A>RG Alpha to Memory 4-Register block start in X Stores Alpha into 4 Registers Ken Emery PPCJ V11 N7 p26
40 A>ST Alpha to Stack Alpha String NNN's in Stack Ángel Martin SANDBOX Project
41 AINT Alpha Integer Part Number in X Appends Integer part Frits Ferwerda -ML ROM
42 ARCLCHR ARCL Char # Chars in X, FileName in Alpha Chars appended to Alpha Hakan Thorngren PPCJ V13 N7 p19
43 AREV Reverse Alpha Alpha String Reversed Alpha String Frans de Vries DF V10 N8 p8
44 ASUB Alpha Substitute Y: position; X:Char Places char in position Zengrange ZENROM Manual
45 CHRSET Character Set Demo None Shows all characters Chris L. Dennis PPCJ V18 N8 p14
46 CLAX CLA from Comma None Alpha deleted from Comma W&W GmbH CCD ROM
47 CNT+ Increase Contrast None Contrast increased by One Michael Katz HPX V1 N6 p8
48 CNT- Decrease Contrast None Contrast decreased by One Michael Katz HPX V1 N6 p8
49 CTRST Set Contrast Value (1 to 15) in X none Michael Katz HPX V1 N6 p8
50 CTRST? Current Contrast None Current contrast setting Michael Katz HPX V1 N6 p8
51 DSTEST Display Test None all segments on Chris L. Dennis PPCJ V18 N8 p14
52 LADEL Left Alpha Delete None Deletes left char in Alpha Ross Cooling PPCJ V12 N2 p16
53 LEFT$ Left String String length in X Leaves left chars in alpha Ross Cooling PPCJ N13 N2 p8
54 LOW$ Lower Case Alpha Alpha String Lower Case Alpha String Ángel Martin SANDBOX Project
55 MID$ Sub String Beginning in Y, length in X Leaves substring in Alpha Ross Cooling PPCJ V12 N2 p29
56 RADEL Right Alpha Delete None Deletes Right char in Alpha Ross Cooling PPCJ V12 N12 p10
57 RATOX Right Alpha to X None Right Alpha Char value in X Ross Cooling PPCJ V12 N12 p10
58 REMZER Remove Leading Zeroes None Zeroes removed Ross Cooling PPCJ V12 N12 p6
59 RG>A Memory to Alpha 4-Register block start in X Recalls 4 registers to Alpha Ken Emery PPCJ V11 N7 p26
60 RIGHT$ Right String String length in X Leaves right chars in alpha Ross Cooling PPCJ N13 N2 p8
61 ST>A Stack to Alpha NNN's in Stack Alpha String Ángel Martin SANDBOX Project
62 UPR$ Upper Case Alpha Alpha String Upper Case Alpha String Mark Power DF V8 N1 p10
63 VIEWA View Alpha Alpha string Shows Alpha, not stopping Ken Emery MCODE For Beginners
64 XTOAL X to Alpha Left Char value in X Appends char to alpha on left Hakan Thorngren PPCJ V13 N7 p9
1 -Math Fncts Header None Shows "No Worries" in Alpha Ángel Martin SANDBOX Project
2 ACOSH Inverse COSH Number in X Value in X, x in LASTX Nelson Crowle AECROM Module

 30

Fnc# Function Name Description Input Output Author Source
3 ASINH Inverse SINH Number in X Value in X, x in LASTX Nelson Crowle AECROM Module
4 ATANH Inverse TANH Number in X Value in X, x in LASTX Nelson Crowle AECROM Module
5 COSH Hyperbolic Cosine Number in X Value in X, x in LASTX Nelson Crowle AECROM Module
6 D>H Decimal to Hex Dec String in Alpha Hex string in Alpha William Graham PPCJ V12 N6 p19
7 DECX Decrement X Number in X Number-1 in X Ross Cooling PPCJ V12 N12 p21
8 DFRAC Decimal to Fraction Decimal number in X Fraction in Alpha Frans de Vries DF V9 N7 p8
9 E3/E+ Builds Matrix Pointer N in X 1,00N left in X Ángel Martin SANDBOX Project

10 GEULER Euler's Gamma Constant None 0,5772156649 Ángel Martin SANDBOX Project
11 H>D Hex to Decimal Hex string in Alpha Dec String in Alpha William Graham PPCJ V12 N6 p19
12 INCX Increment X Number in X Number+1 in X Ross Cooling PPCJ V12 N12 p21
13 PRIME? Is X Prime? Number in X Yes: Divisor in X - No: none Jason Delooze PPCJ V11 N7 p30
14 QREM Quotient Remainder Y:Dividend, X: Divisor Remainder Ken Emery MCODE For Beginners
15 QROOT Quadratic Roots X: a, Y:b, Z: c X: x1, Y: x2; Z: 0 if Complex Ángel Martin SANDBOX Project
16 RANDN Random Number Seed Random number Ken Emery MCODE For Beginners
17 REGSORT Register Sort X: Begin,end Sorted registers Hajo David PPCJ V12 N5 p44
18 RCL+ Recall Sum Number in Y, Reg# in X Result in X Ross Cooling PPCJ V14 N4 p16
19 RCL- Recall Subtract Number in Y, Reg# in X Result in X Ross Cooling PPCJ V14 N4 p16
20 RCL* Recall Multiply Number in Y, Reg# in X Result in X Ross Cooling PPCJ V14 N4 p16
21 RCL/ Recall Divide Number in Y, Reg# in X Result in X Ross Cooling PPCJ V14 N4 p16
22 SIGNUM Sign Number Value in X Sign in X, value to LASTX Ross Cooling PPCJ V12 N12 p31
23 SINH Hyperbolic Sine Number in X Value in X, x in LASTX Nelson Crowle AECROM Module
24 STSORT Sort Stack Stack full Stack sorted David Phillips PPCJ V12 N2 p13
25 T>BASE Decimal to Base Y: Base, X: Value Alpha: new value Ken Emery MCODE For Beginners
26 TANH Hyperbolic Tangent Number in X Value in X, x in LASTX Nelson Crowle AECROM Module
27 VMANT View Mantissa Decimal number Mantissa Ken Emery MCODE For Beginners
28 X>=0? X>=0? Like X<-0? Skips a line if false Ángel Martin SANDBOX Project
29 X>=Y? X>=Y? Like X<=Y? Skips a line if false Ken Emery MCODE For Beginners
30 X=1? X=1? Value in X Skips a line if false Nelson Crowle NFCROM
31 X=Y?Z? Double Comparison Values in X, Y, and Z Skips one or two lines Ken Emery MCODE For Beginners
32 Z+ Complex Addition T:Im1, T: Re1, Y: Im2, X:Re2 Y: ImSum; X: ReSum Ángel Martin SANDBOX Project
33 Z- Complex Subtraction T:Im1, T: Re1, Y: Im2, X:Re2 Y: ImDiff; X: ReDiff Ángel Martin SANDBOX Project
34 Z* Complex Multiplication T:Im1, T: Re1, Y: Im2, X:Re2 Y: ImProd, X: ReProd Ángel Martin SANDBOX Project
35 Z/ Complex Division T:Im1, T: Re1, Y: Im2, X:Re2 Y: ImDiv; X:ReDiv Ángel Martin SANDBOX Project
36 1/Z Complex Inversion Y: Im(Z); X: Re(Z) Y: ImInv; X: ReInv Ángel Martin SANDBOX Project

 31

Fnc# Function Name Description Input Output Author Source
37 -Hacker Lab Header None None (NOP) Ángel Martin SANDBOX Project
38 aNNRCL Absolute addres NNRCL Absolute address in X NNN in X Ken Emery MCODE For Beginners
39 BCD>BIN BCD to Binary BCD in X NNN in X Ken Emery MCODE For Beginners
40 BIN>BCD Binary to BCD NNN in X BCD in X Ken Emery MCODE For Beginners
41 CHKROM Check ROM XROM Number Test result message HP Co. HP-IL Devel ROM
42 FDATA Function Data Prompts for Function Name Address, Type, KA data in Alpha Klaus Huppertz PRISMA, Jan-90
43 GETW Get Word Absolute address in X Word Value in X as NNN Ángel Martin SANDBOX Project
44 HEX>NNN Code Hex in Alpha NNN in X Ken Emery MCODE For Beginners
45 HEX>VSM HEX to VASM Oct Prompts for Hex in Alpha Oct in Alpha in VASM format Ken Emery MCODE For Beginners
46 HEXIN Enter NNN Directly Prompts for Hex in Alpha NNN in X Hakan Thorngren PPCJ V
47 HXENTRY Enter NNN Directly Prompts for Hex in Alpha NNN in X Clifford Stern MCODE For Beginners
48 MNF Mainframe Function Prompts for function code Executes the function Clifford Stern PPCJ V12 N3 p37
49 NNN>HEX Decode NNN in X Hex in Alpha Clifford Stern MCODE For Beginners
50 RAMEDIT RAM Editor Address in X or PRGM pointer RAM Editor Hakan Thorngren PPCJ V13 N4 p26
51 RCLB Recall Byte Address in M Byte in X Mark Power DF V7 N8 p24
52 ROMIN ROM In Prompts for Page number ROM Read in Warren Furlow www.hp41.org
53 ROMOUT ROM Out Prompts for Page number ROM written out Warren Furlow www.hp41.org
54 STOB Store Byte Address in M, Byte in X Stores Byte Mark Power DF V7 N8 p24
55 SUMROM Checksum Calculation Prompts for Page number Checksum updated George Ioannou DF V3 N1 p10
56 VSM>HEX VASM Oct to HEX Prompt for Oct in Alpha Hex in Alpha Ken Emery MCODE For Beginners
57 X<>B Exchange Byte Address in M, Byte in X Exchanged values Mark Power DF V7 N8 p24
58 XQ>XR XEQ to XROM Program name in Alpha XEQ changed to XROM W&W GmbH RamBox
59 -Playground Header None None (NOP) Ángel Martin SANDBOX Project
60 BUZZON Buzz Mode On None Sets buzzer on Andreas Meyer Cursor N.2/89 p14
61 CLAXON Alternative Beep None Distorted Tone Mark Power DF V7 N7 p12
62 NOBUZZ Buzz Mode Off None Sets buzzer off Ángel Martin SANDBOX Project
63 RASP Alternative Beep None Rasping Tones Mark Power DF V7 N7 p12
64 ROLLERS High Rollers Game None Game Ross Cooling PPCJ V

