Sudoku 41 - Mini-Manual

SUDOKU & Sound

Module for the HP-41

E o+

PRGM ALPHA

The Star Spangled Banner

FJ Scott Keyf J. Stafford Smith

Andante moderato

I i P [- T—
e e e ——
0 q _#
S 1 C
0 |=- 1| I T I

(Qﬂﬁ‘.:f& 2
s] =
L =
p—

LINE A
ol
L 1 188
L 18
- -~ o QE
b it

R T YR=1rYh
H L
BREL 15, L 10
T
[TRy
o« el
EL I T | 1N
L 100,
| le| L
NEL]
L)

1
—
e,

L]

' 4

1l 20005 Mook Putlsshing. All Fights esser

Mini-manual and QRG

™
_______ A
L - e Programmed by Jean-Marc
o s s . _ ; '
g w o Cw . 7 g Baillard & Angel Martin

PN A / A @‘J\/I }Q\ @:, AR

% % €% % % v 0 &N

0606 00 06 6HOOGOO 6L 6 80006 S0
@b @ @ @ e B o © ® ®

Revision 1C - December 2011

© Martin-Baillard, December 2011 Page 1

Sudoku 41 - Mini-Manual

This compilation: revision A.1.1.

Copyright © 2011 Angel Martin

Published under the GNU software license agreement.

Original authors retain all copyrights, and should be mentioned in writing by any party utilizing this
material. No commercial usage of any kind is allowed.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.
See: http:\\www.hp41.org

© Martin-Baillard, December 2011 Page 2

Sudoku 41 - Mini-Manual

Intro.

I've never done a Sudoku - somehow always found writing MCODE to be a more relaxing activity, being such

a geek. | didn’t even know the rules before working on this module, so perhaps you'd be thinking I'm hardly

qualify to write Sudoku solving software - and you're right. We have to thank Jean-Marc Baillard for the

Sudoku solvers and Grid programs, around which | built the rest of the routines for a more convenient usage

and easier Ul.

Whit this said, this is supposed to be a fun module even if by its nature Sudokus are brainy puzzles. There
are two main sections, the “- SUDOKU” and the "-SOUND F/X" - loosely grouping sound-related functions and
programs — plus two more about Magic Squares, slightly related to the same theme. These basically revisit
some old concepts and even add a bit of tune playing to celebrate your next July 4™, with style - an
indulgence with a beeper twist.

So here it is, straight from the "Martin-Baillard" module facture - hope you enjoy it!

Function Description Input Qutput Author

1 -SUDOKU Section Header none shows "Loading...” Angel Martin
2 ASROW Enter Row rows in X inputs string of values Angel Martirn
3 ADEL Alpha Back Space string in Alpha deletes last chr Ken Emery

4 [AINT Append Integer numberin X appends integer part Frits Ferwerda
5 |AHNUMDL AMUM wi Deletion string in Alpha number in X/ deletes chrs HF Co.

i E3lE+ 1,00x numberin X index preparation ,fingen' Martin
7 |GRID Creates Sudoku GRID type # blanks in X Grid ready in R1-R9 JM Baillard

a SDK Fast Solver Sudoku in R10-R19 Sudoku solved in R1-R8 JM Baillard

9 "SDKO" Example #0 none resolves blank Sudoku :inge.' Martin
10 ["SDK1"™ Example #1 none resolves Sudoku #1 Angel Martin
11 |"S5DK2" Example #2 nane resolves Sudoku #2 ﬁnge.‘ Martin
12 | SDKIN Data input none Loads Data in R1-R&1 ﬁinge.‘ Martin
13 [SDKOUT Data Output Data in R1-R&81 Loads Sudoku in R1-R9 Angel Martin
14 |"SLSDK" Slow Salver Data in R1-R&1 Solves Data in R1-R81 JM Baillard

15 ("SUD" Housekeeping Sudoku in R1-R4 Solves Sudoku in R1-R9 Angel Martin
16 |"SUDOKU"™ Main Program nder program contral Main program ﬁinge.‘ Martin
17 |"SUDRFNT™ RPM Program Under program control Main program #2 :inge.' Martin
18 ["SUDVIEW™ View Sudoku Sudoku in R1-R9 Yiews Sudoku in R1-R9 Angel Martin
19 | ZDIG Digit Sum numberin X sumin X ,fingen' Martin
20 [-SOUND FX Seclion Header none Shows "Solving..." Angel Martin
21 |BUZION Set Buzzer Mode none sets busser mode Andreas Meyer
22 |CLAXON Claxon sound none makes sound Mark Power
23 [NOBUZZ Clear Buzzer Mode none clears buzzer mode Angel Martin
24 |RASP Rasp sound nane makes sound Mark Power
25 |RNG Randomd# wi Timer none random number in X JM Baillard
26 [TONEXY Configurable TOMNE Length in X, Freq.in Y plays tone JM Baillard
27 |"C-NT" Chords to Motes Chord in Alpha displays notes JM Baillard

28 ["N-CT Motes to Chords Motes in Alpha dizplays chord name JM Baillard

29 |"MORSE" Marse Code Textin Alpha plays Morse JM Baillard
0 |"S5B" Star-spangled Banner none plays tune JM Baillard

31 [LEFT Shifts display left none display shifted Melson Crowle
32 |GOOSE Puts Left Goose in Display nane sets msqg flag Melson Crowle
33 |"MAGIC” Magic Squares prompts for order (odd) FOO set stores values JM Baillard
34 ["PANMG" Pan-Magic Squares prompts for order FOO set stores values JM Baillard

© Martin-Baillard, December 2011

Page 3

Sudoku 41 - Mini-Manual

Two main programs — “SUDOKU” and “SUDRPN”.

The Sudoku module really is arranged around these two programs. The data entry and output routines are
either integrated into them, or called as outside available functions in the ROM. The solving components are
SDK and SLSDK (SLow SDK) respectively, the first one being a MCODE function is about 180 times faster than
the second.

The structure of these programs can be represented by the following block diagram:

DataEntry | > Processing | > Data Output |

With the table below showing the different functions used:

Program Data Entry Processing Data Output
SUDOKU ASROW SUD (and SDK) SUDVIEW
SUDRPN SDKIN SLSDK SDKOUT

. Grid data entry: the ASROW function.

One of the nice aspects of the module is the fast and convenient way to enter the Sudoku grid data. The
traditional approach would require prompting for each individual element, for a total of 81 — clearly a tiring
and inefficient system.

Considering that the Sudoku elements are single digits (0 to 9), there must be a better way to go about the
data entry process — and there is: meet the ASROW function, which uses Alpha as vehicle for the digit input
in blocks of multiple elements at once, (therefore arranged in rows) all with a special keyboard enabled for

the task, as follows:

- Numeric keypad, for 0-9 as element value

- Back arrow to delete previous entry or cancel out
- R/S, to terminate the entry sequence

- ON turns the calculator off

The figures below show entry of the elements in rows #1 and #3 mid-way. Note how digits are separated by a
colon, delimiting each individual digit. The left of the display has an input arrow plus a number, signaling the
“row” being edited.

USER 01 UZER 01 PRGM

A Y I25988] Pl D D s N % % B

The editing process may be terminated at any time. Elements are being stored in Alpha, from where they’'ll
be retrieved by the data input routine in a loop using function ANUMDL — converting the alpha string into a
valid number and storing it in the appropriate data register. Missing values (if fewer than 9) will be replaced
with zeroes, and excess elements (if more than 9) will be ignored.

© Martin-Baillard, December 2011 Page 4

Sudoku 41 - Mini-Manual

. Solving the puzzle: SDK and SLDK.

At the core of the Sudoku programs are the number-crunching engines, the real heart(s) which actually
resolve the puzzles and write the results for the data output routines to pick-up. Both are written by Jean-
Marc Baillard; see the corresponding pages on the appendix section of this mini-manual.

Execution times can be very long, therefore it's most recommended to use TURBO50 on the 41CL — or a PC-
emulator (like V41 running in turbo mode). Note also that some grids won’t have a valid solution, which will
be displayed as “DATA ERROR” or “NO SOLUTION”- both really meaning: “sorry, no cigar”.

The best way to test the functionality is by solving the canned examples included in the module; “SDK0”,
“SDK1”, and “SDK2”. The first one is a trivial all-zero (blank) grid — not a valid Sudoku but interesting
nonetheless. The second is a simple easy case, which is resolved quickly. The third however will require a
much longer execution time — and all the three of them can be used to check that the programs are working

fine. Refer to JM’s pages for the grid definition and solutions of these examples.

Examplel: Solve the following sudoku: A more difficult example: With the grid:
000|300|050 090]042]010
005|406|002 005]000]000
270]010|360 300|000]904
704(230(000 000|000|193
510|000|037 220]700]0068
000|047 901 000|001]000
46|090|015 900|050|080
100|608|700 000|204]007
050004000 000|016]800

M. Outputting the results.

Data output is presented in the same compact mode way in all cases — regardless of the program used. There
is one prompt per row, repeated until the complete grid is shown. This facilitates reading the solution as it
avoids multiple prompts to see the elements of a single row. Below are some examples taken from the
solution of the “SDK1” puzzle.

A S =Sl = = = et = S = S = ™ S R oty = iy =S

USER o1 USER o1

O N = N S N A = I B S M N =i i =9 N =

USER o1 USER 01

© Martin-Baillard, December 2011 Page 5

Sudoku 41 - Mini-Manual

The actual register allocation is detailed in the following table. Note that all data handling is managed by the
programs, so it’s completely transparent to the user. However it’s important to know when the individual
components are used as subroutines in other programs - or manually from the keyboard.

Program Input Data Location Output Data Location
ASROW Alpha R1-R9

SUD R1-R9 R10-R18

SDK R10-R18 R1-R9

SUDVIEW R1-R9 unchanged

SDKIN Alpha (calls "SROW) R1-R81

SLSDK R1-R81 R1-R81

SDKOUT R1-R81 unchanged

As you can see “SUDOKU” features a much more efficient RAM usage, with the 81 cells stored in just nine
data registers — a “compact mode” with each element taking up just one nibble of the corresponding
mantissas; behold the power of MCODE in action. In contrast, “SUDRPN” requires many more available
registers to execute — even if the data entry is also done in the same fashion.

Refer to the Sudoku_Blueprint document for programming code details. The following pages show the
program listing for the main SUDOKU program, where you can see how all elements come together to deliver
“something bigger than the sum of its parts” — or at least close enough.

1 SUDOKU FOCAL 41C3 016 UserCode: 158 bytes

2 SUDOKU FOCAL A1C4 240 (22 regs + 4 bytes) NONPRIVATE

3 SUDOKU Header A1C5 1CC LABEL

4 SUDOKU Header A1CE D00 GLOBAL

5 SUDOKU Header A1CY OFF =7-Chrs.=

i SUDOKU Header a1ce oo "

[SUDOKU Header a1ce o5z 5" Driver for Data Entry
8 SUDOKU Header A1CA D55 - and puzzie resolution
9 SUDOKLU Header A1CB D44 D" Dlus review (1)
10 SUDOKU Header AICC 04F "O"

11 SUDOKU Header AICD 048 K" Ange! Martin
12 SUDOKU Header A1CE 055 s

13 SUDOKU | SUDOKU AICF 11A6 XROM 25 44

14 SUDOKU A1DOD {06C AB6C SIZE?

15 SUDOKU AD1 M2 2

16 SUDOKU 4102 D10 0

17 SUDOKU 4103 M45 X=Y?

18 SUDOKU AlD4 11AE XROM 235,30

19 SUDOKU A1D5 03E ABSE PSIZE

20 SUDOKU AD6 119 9 row counter

21 SUDOKU A1DT |1A4 XROM 16,05

22 SUDOKU A1DE8 (005 A4:05 EE+

23 SUDOKU A1D9 1AE XROM 25350

24 SUDOKU A1DA (072 ABT2 CLRGX

© Martin-Baillard, December 2011 Page 6

Sudoku 41 - Mini-Manual

Next section show the data entry loops, featuring ASROW and ANUMDL as main components:- To read each
cell value into a nibble of the register we use the trusty old 107X function, with an element counter
increasing from 1 to 9 as exponent. The message “LOADING...” is shown during the processing of each row, to
provide feedback to the user that there’s some action happening.

Note that pressing BackArrow will not cancel the process, but rather will mode the execution to the next row
— until the complete grid is covered. If you want to abort the process simple press the ON key to switch the
calculator off.

25 SUDOKU [5 CUEBE i
26 SUDOKU ADC 11B E reget build to 1,000000000
27 SUDOKU A1DD M91 STO IND Y (2) store in proper location
28 SUDOKU A1DE OF2Z2
29 SUDOKU &1DF FA7T CLX
30 SUDOKU AE0 TM19 B
)| SUDOKU A1E1 lrfAd XROM 16,05
32 SUDOKU ATEZ JO05 A4:05 E3/E+
33 SUDOKU A1TE3 1144 XROM 16,01 Input row elements
34 SUDOKU AME4 001 A401 ASROW
35 SUDOKU A1TES A9 CF 22
36 SUDOKU AEE D16
v SUDOKU AMET 11A4 XROM 16,00 "Loading..." msg
38 SUDOKU -SUDQKL
39 SUDOKU E 7 pooE 5
40 SUDOKU A1TEA 1144 XROM 16,04 get number in X
4 SUDOKU AEB 004 A404 ANUMDL
42 SUDOKU ATEC 1AB FC?C 22 got something ?
43 SUDOKU A1ED _"I:I_1I_3 _____________________ -
44 SUDOKU &1EE 11B3 GTO 02 — no, skip row |
45 SUDOKU AEF 090 <Distance> _ - t6oytes . _._|
46 SUDCKU ATF0 ‘_'1_57_?_ _x=Q? Ll lisitzero?
47 SUDOKU A1F1 LTBS GTO 05 —— skip processing |
48 SUDOKU AF2 1087 <Distance= _ | | | | _ | Toyes _ _____ _._. i
49 SUDOKU ATF3 190 RCL Y (2)
50 SUDOKU AF4 o7z
51 SUDOKU A1F5 Me8 INT store in corresponding
52 SUDOKU H1F6 57 104K decimal digit - order
B3 SUDOKU AF7 M4z g
54 SUDOKU s1F8 Moz ST+ IND Z (1) add to build
L SUDOKU
56 SUDOKU [B
57 SUDOKL discard value
58 SUDOKU increase element count
58 sbgpOB. Mk o7z T _
60 SUDOKL go and fefch next element !
61 SUDOKU . -23bytes |
g2 SUDOKU |E§: CILLTAZR0 Y] S
SUDOKL discard element counter
SUDOKL increase row count
SUDOKU -
SUDOKU go to next row i
67 SUDOKU / =Distance= 43bytes]

© Martin-Baillard, December 2011 Page 7

Sudoku 41 - Mini-Manual

After this comes the actual resolution of the

Header A206 1C4 LABEL
puzzle, and the data output routine. SDK also Header 4207 '009 GLOBAL
“ ” . . Header A208 0F4 =4-Chrs. =
produces the “SOLVING...” message, which will Codar ao0s 000 " moves data from R1-R9
blink with each iteration of the code. Header A20A 053 "s" to R10-R18, then calls SDK
Header A208 055 Ut
Header A20C D44 D"
SUD AZ20D (119 9
A20E 144 XROM 16,05 1,009
Only remaining part is the data A20F J003 _A405 E3E:
4210 (176 LASTX
output. Results are stored in R1-R9, so it’s just A211 (140 + 10,009
. . L . A212 [1A4 XROM 16,05 1.010003
about prompting them in a similar fashion as A213 fOO5 A405 Ea/Es
the used during the data entry process. A214 {146 XROM 2535
4215 1063 A6:63 REGMOVE
Header A228 {CC LABEL 31 ? r;gi i?g? 16,07 SOK
FELLE B 0D ELTERL 2218 [1A4 XROM 16,23 Tasping sound
Header A224 0F8 f?—Chrs% A210 TO47 A4AT RASP
Eizg: ﬁg ggg e A21A [1FB Text11
Header A22D 055 "U" Views Sudoku ﬁ}g ggﬂ
Header AZZE 044 "o" stored in R1-R9 2210 o024 -
Header A22F 056 "W : b —
o A21E (020
Header A230 049 I r. f—
v o o 821F [044 "D
Header A231 045 E Angel Martin e . e
Header 032 057 W 4220 |o4F .O. DONE
SUDVIEW A233 [119 9 row counter gg; %Zg ,g,
A234 |1A4 XROM 16,05 : b —
A235 '005 A405 E3/E+ A223 020
] ; = 4224 [o2a
A225 024 ™
A226 17E AVIEW
A230 [1A4 XROM 16,03 | |A227 189 PSE
A23A 1003 A403 AINT i
A238 [[1F3 Text3
A23C |o7F T
A23D o34 T
A23E D20 "
A23F 10 To element counter
A240 11A4 XROM 16,05
A241 o05 A405 E2E+
A242 90 RCL INDY (2)
AZ45 169 FRC discard integer part
A246 11B E
A247 011 1
A248 M4z = first decimal to IP
A249 {1A4 XROM 16,03 :
A24p 1003 A403 AINT i
AZ24B 1F2 Text-2 append and separate
A24C |OTF T
A24D 034 "
A24E 196 ISG Y (2) increase element count
A4 QP2 |
A250 [1B5 GTO 04 next element |
A251 (00E _ =Distance= _ _ _|__ |14bytes _ _ _ _ ___ i
A252 17E AVIEW
A253 M75 RDN
A254 M75 RDN
A255 MoB 132G X (3) increase row count
A26 072 0
AZ5T7 11B4 GTO 03 next row |
A258 023 _ <Distance= _ _ ___ _|-35bytes_ _ _ _ . _ . ___ i
A259 1C0 END
FOCAL AZBA 007 <CHAIN>-49 bytes
FOCAL A25B 22F <End of Programs=

© Martin-Baillard, December 2011

Page 8

Sudoku 41 - Mini-Manual

Iv. The 41 strikes back: GRID generation.

Program GRID will prepare a Sudoku grid by randomly clearing some of the elements in a solved Sudoku pre-
loaded for this purpose. The number of zeroed elements is defined in X before calling GRID. The final grid will
be place in compact mode (each element a nibble of the mantissa) in registers R1-R9, ready for “SUDOKU” in
case you have given in.

GRID uses RNG to determine which elements within each row will be cleared. RNG uses the TIME Module —
so this function will fail if the timer is not present. When the execution ends the message “GRID MADE” is
shown in the display.

Observant users will no doubt note that GRID is a left-handed program. The 41 knows that and instructs the
goose to behave accordingly — flipping left and running backwards! — all thanks to functions LEFT and GOOSE,
written by Nelson F. Crowle, one of the authors of the AECROM module among other landmarks.

The usage of these functions is shown in the following code snippets. First GOOSE puts up the left goose on
the display, and LEFT then should be called at every iteration of a loop, so that the display contents is shifted
one position to the left. Note also the other combinations (*) to amuse your friends.

LBL 10 Left Goose flies left
GOOSE

LBL 01

LEFT

0
GTO 01

LBL 11 Alpha Rotates Left
AVIEW

LBL 02

LEFT

i]

GTO 02

LBL 12 Right Goose Flies LEFT
50
TOGF
LBL 03
(*) Use SF 25, SF 99, and AVIEW to rotate Alpha RIGHT. LEFT
0

TOFG toggles flag status, available in other ROMS. CTO03

LBL 13 Left Goose Flies RIGHT
GOOSE

50

TOGF

LBL 04

il

GTO 04

© Martin-Baillard, December 2011 Page 9

Sudoku 41 - Mini-Manual

Outro:- The “Sound F/X” section

To complement the module there is a selection of programs from Jean-Marc’s library, providing a nice sample
featuring the 41 Beeper in the starring role — capable even if limited as it is. Included is a nice rendition of the
Morse code player, plus the Star-Spangled Banner tune and a couple of beep-replacement functions (RASP
and CLAXON).

Also related to sound is the Chords-to-Notes conversion programs, a gem for those musicians amongst us
with an inclination for unusual chords and scales. A copy of the web pages is included to this mini-manual for
completion.

Last and least there is the few utility functions used to round up the programs and save bytes — which by
itself makes them worth adding to this and any module. Usual suspects also present in many other modules
and probably familiar names by now: ZDIG, ADEL, AINT, E3/E+. A fixture, well worth the space they occupy.

1 DIG Header ATDB D87 "G"
2 DIG Header ATDC D09 "
3 DIG Header A7TDD "oo4 "o"
4 IDIG Header ATDE 0O4E "E" A'rrge-' Martir
DG |EDIG ATDF OF8 READ 3(X)
IDIG AYEOD DDE A=0ALL initial sum =0

7 IDIG AYE1 39C PT=0
8 IDIG |NEKTD AJE2Z 33C RCR1
9 DIG A7JE3 3CE RSHFC S&X
10 DIG ATE4 3CE RSHFC S&X
11 zDIG ATES 46 A=A+C 58X add to previous sum
12 DIG AYJEG 3DC PT=PT+1

3 DG AYET 0D4 7PT=10
14 IDIG AYES 3D3 UNC-06 NEXTD]
15 IDIG AYE9 17D PNC GO CX-only!!
16 ThIG AJEA 10CE -=315F FATOX20]
1 BUZZER Header ATEC 080 -
2 BUZZER Header ATED (013 5"
3 BUZZER Header ATEE 001 "A"
4 BUZIER Header ATEF 012 "R" Mark Power
5 BUZZER |RASP ATF0 3B8 READ14d)
BUZIER ATF1 17C RCREBG
7 BUZZER AFF2 3D8 C==8T
g BUZIER ATF3 0BC PFSETHS
g BUZZER ATF4 3AD NCRTN
10 BUZZER a7Fs 30 Tloisex T T T T T T !
11 BUZIER ATFG |EFF_) EDN_ ______________ e J
12 BUZZER ATFT 358 ST=C

3 BUZZER ATFE 208 ST==T e
14 BUZZER ATF9 i130 LDl S&X |
15 BUZZER ATFA 1048 COM: e
16 BUZZER | ATFB 2D8 ST==T
17 BUZZER ATFC 106 A==C SE&X
18 BUZZER ATFD 1AB A=A-1 38X
19 BUZIER ATFE (3FB JNC-01
20 BUZZER AFFF 266 C=C-1 38X
21 BUZIER AB00 3DB JNC-05
22 BUZZER ABO1 ac4 8T=0
23 BUZIER AB0DZ2 3B8 READ 14(d)
24 BUZZER AB0D3Z 17C RCRGB
25 BUZIER ABD4 2D8B ST==T
26 BUZZER A305 BE0 RTN

© Martin-Baillard, December 2011 Page 10

hp4lprograms Page 1 of 9

hp41programs

4

Home

Sudoku for the HP-41

Overview

1°) Focal Program
2°) M-Code Routine
3°) Creating a Grid

-A sudoku is a 81-cell grid with 9 rows, 9 columns and 9 regions of 3 x 3 cells.
-Each row, each column and each region must contain all the integers from 1 to 9 exactly once, for instance:

4613721859
935486172
2781915364
794|1231|586
512869437
683|547]921
8461793215
1291658743
3571124|698

-Given a partially empty grid, the puzzle consists in finding the missing numbers.
-The sudoku above is the solution of the problem below, where the empty cells are replaced by zeros:

000]300]050
005[406]002
270]010(360
704(230]000
510[000]037
000[047]901
046]090]015
100]608[700
050[004]000

1°) Focal Program

-"SDK" solves a sudoku by backtracking.
-Though it could theoretically solve any - solvable - sudoku, only a few can be solved, due to prohibitive execution times !

http://hp41programs.yolasite.com/sudoku.php 15/12/2011

hp4lprograms

Data Registers:

Flags: /

ROO & R82 to R94: temp

Page 2 of 9

(Registers R0O1 thru R81 are to be initialized before executing "SDK

* RO1to* R81 = the elements of the sudoku grid, in column order (or row order) with 0 in the empty cells.

Subroutines:/

-Lines 99-102-119 are 3-byte GTOs

(214 bytes / SIZE 095)

| STACK

| INPUTS

| OUTPUTS

| X

/

/

Example1: Solve the following sudoku:

000|300]05
005[406[]00
270]010]36
7041230]00
510]000]03
000]047]90
046]1090]01
10060870
050/004]00

N

5
0
0

-Store the 81 elements into RO1 to R81 in column order (0 STO 01 STO02 2 STOO03ceeeiveennnn.

XEQ "SDK" >>>> the solution hereunder is returned in about 1h02mn (!)

6113
935|438

http://hp41programs.yolasite.com/sudoku.php

218
6117

589
2

0 STO81)

15/12/2011

hp4lprograms Page 3 0f 9

7941231|586
512869437 Actually, the digits found by the HP-41 are preceded by a "minus" sign
683|547]921
846793215
129|658 |743
35711241698

Example2: With the empty grid - which is not a "proper" sudoku - "SDK" gives the following solution:

XEQ "CLRG"
XEQ"SDK" >>>> (in about 2h30mn)

892563471
673491582
451|782|693
928|635|714
73619141825
5141827936
289|356 |147
3671149258
145|278|369
Notes:

-Obviously, this program is very slow, all the more that these examples belong to the easy puzzles.
-However, if you are using a good emulator in turbo mode, the execution times become about 6 seconds and 15 seconds respecti

-The address of the current register is displayed (81 80)
-If line 110 is executed, displaying "NONEXISTENT", the puzzle has no solution.

2°) M-Code Routine

-This M-Code routine uses a similar scheme to solve a sudoku.
-It is almost 200 times as fast as the focal program.
-So, much more puzzles can be solved in a "raisonnable" time.

08B "K" @E347 in my ROM
004 "D"

013 "S"

3C8 CLRKEY

378 C=c

03C RCR3

106 A=C S&X

130 LDI S&X

012 012h=018d

146 A=A+C S&X
130 LDI S&X

200 200h=512d

306 ?A<C S&X

381 ?NCGO

00A NONEXISTENT
378 C=c

0A6 A<>C S&X

106 A=C S&X

1BC RCR 11

130 LDI S&X

http://hp41programs.yolasite.com/sudoku.php 15/12/2011

hp4lprograms

009
246
106
27C
0A6
0BC
070
04E
19C
050
050
050
050
050
050
050
050
050
268
10E
1EE
1EE
1EE
20E
228
0AO
21C
3DC
0BO
354
063
266
27A
070
106
17C
366
3AF
04E
270
228
3EO
270
038
2E2
377
10E
046
270
238
158
OEO
01C
362
07B
3DC
354
3E3
0AO
130
008
10E
0BO
17C
226
270
OE6

009
C=A-C S&X
A=C S&X
RCR 9
A<>C S&X
RCR 5
N=C ALL
C=0 ALL
PT=11
LD@PT- 1
LD@PT- 1
LD@PT- 1
LD@PT- 1
LD@PT- 1
LD@PT- 1
LD@PT- 1
LD@PT- 1
LD@PT- 1
Q=C

A=C ALL
C=C+C ALL
C=C+C ALL
C=C+C ALL
C=A+C ALL
P=C
SLCTP
PT=2
PT=PT+1
C=NALL
2PT=12
JNC+12d
C=C-1 S&X
C=C-1M
N=C ALL
A=C S&X
RCR 6
2AH#C S&X
JC-11d
C=0 ALL
RAMSLCT
P=C

RTN
RAMSLCT
READATA
2CHO@PT
Jc-18d
A=C ALL
C=0 S&X
RAMSLCT
c=P

M=C ALL
SLCTQ
PT=3
2AHC@PT
JNC+15d
PT=PT+1
2PT=12
JNC-04
SLCTP
LDI S&X
008

A=C ALL
C=N ALL
RCR 6
C=C+1 S&X
RAMSLCT
B<>C S&X

Page 4 of 9

here N contains the addresses of R09 R00 R18 R09 in nybbles 11-10-9 8-7-6 5-4-3 2-1-0 respect

C=111111111 in nybbles 11to 3

P =999999999 in nybbles 11 to 3

loop 0
LOOP1 at the address E376 in my ROM

goto loop 0

the routine stops here if a solution is found

goto loop 1

LOOP2 at the address E38D in my ROM

we test if the digit is different from all the other digits in the same column

http://hp41programs.yolasite.com/sudoku.php

15/12/2011

hp4lprograms

038
362
1A3
OE6
1A6
3C3
0BO
10E
1A6
17C
226
226
226
306
03F
226
226
226
306
017
03C
OE6
OEO
01C
0AO0
014
087
054
077
094
067
OEO
15C
0AO
154
03F
294
02F
114
01F
OEO
25C
OEO
198
130
002
23E
23E
10E
OE6
270
OE6
038
362

READATA
?2MHC@PT
JNC+52d
B<>C S&X
A=A-1 S&X
JNC-08
C=N ALL
A=C ALL
A=A-1 S&X
RCR 6
C=C+1 S&X
C=C+1 S&X
C=C+1 S&X
?A<C S&X
JC+07
C=C+1 S&X
C=C+1 S&X
C=C+1 S&X
?A<C S&X
JC+02
RCR 3
B<>C S&X
SLCT Q
PT=3
SLCT P
?PT=3
JC+16d
?PT=4
JC+14d
?PT=5
JC+12d
SLCT Q
PT=6
SLCT P
?PT=6
JC+07
PT=7
JC+05
?PT=8
JC+03
SLCT Q
PT=9
SLCT Q
C=M
LDI S&X
002
C=C+1 MS
C=C+1 MS
A=C ALL
B<>C S&X
RAMSLCT
B<>C S&X
READATA
2AHC@PT

0BB JNC+23d
3DC PT=PT+1

1A6
3E3
166
3D4
166
3D4
166
3D4
OE6
266
OE6

A=A-1 S&X
JNC-04
A=A+1 S&X
PT=PT-1
A=A+1 S&X
PT=PT-1
A=A+1 S&X
PT=PT-1
B<>C S&X
C=C-1 S&X
B<>C S&X

we test if the digit is different from all the other digits in the same row

Page 5 0of 9

here, B S&X contains the address of the register in the right lower corner of the 3x3 region (R09 or R

now, pointer Q points to the right lower corner of the 3x3 region (9 or 6 or 3)

the 4 instructions on the left prepare 2 loops that may be executed 3 times

we test if the digit is different from all the other digits in the same 3x3 region

http://hp41programs.yolasite.com/sudoku.php

15/12/2011

hp4lprograms

1BE
36B
0AO
0BO
270
038
0A2
2F0
1D9
38E
0AO
198
10E
046
270
278
1CE
0BO
270
038
0AE
2EE
235
38F
3D4
214
10F
0BO
03C
270
038
2E2
3C7
0BO
270
038
10E
04E
0A2
O0AE
2F0
1A2
342
36B
046
270
278
08E
10E
322
01B
14E
3EB
0BO
270
038
0AE
235
38E
35C
0BO
226
23A
070
27C
106
0BC

A=A-1 MS
JNC-19
SELCTP
C=NALL
RAMSLCT
READATA
A<>C@PT
WRITDATA
?2NCGO
LOOP1
SLCTP
C=M ALL
A=C ALL
C=0 S&X
RAMSLCT
c=Q
A=A-C ALL
C=N ALL
RAMSLCT
READATA
A<>C ALL
2C#0 ALL
2CGO
LOOP2
PT=PT-1
2PT=12
JC+33d
C=N ALL
RCR 3
RAMSLCT
READATA
2CHO@PT
Jc-08
C=NALL
RAMSLCT
READATA
A=C ALL
C=0 ALL
A<>C@PT
A<>C ALL
WRITDATA
A=A-1@PT
2A#O@PT
JNC-19d
C=0 S&X
RAMSLCT
c=Q
B=A ALL
A=C ALL
?2A<B@PT
JNC+03
A=A+C ALL
JNC-03
C=N ALL
RAMSLCT
READATA
A<>C ALL
?2NCGO
LOOP2
PT=12
C=N ALL
C=C+1 S&X
C=C+1 M
N=C ALL
RCR 9
A=C S&X
RCR 5

Page 6 of 9

if the candidate number has successfully passed all the tests, it replaces the zero in the empty cell

Change these words written in red according to the address of LOOP1 in your own ROM

the execution jumps here if the digit has been rejected

we started with 999999999 in M, then we try 888888888 in M , ...etc...

. until we arrive at 000000000
Change these words written in red according to the address of LOOP2 in your own ROM

if all the digits are rejected for this cell, we go to the previous cell (backtracking)

we must also move to the previous register if we were at the left of a register

otherwise, we check in a register between R10 and R18 if the cell was empty or not

If the cell was not empty, we go to the previous cell again

the number in the non-fixed cell is replaced by 0

if the last tested digit was 1, we again go to the previous non-fixed cell

if the digit in the previous cell was, say 8, we must recreate 777777777 which will be stored in CPU regis

Change these words written in red according to the address of LOOP2 in your own ROM

we arrive here if we must go to the "previous" register (R01->R02->R03 ...)

http://hp41programs.yolasite.com/sudoku.php 15/12/2011

hp4lprograms Page 7 of 9

the 4 instructions written in yellow on the left
will stop the routine if the batteries are low
or if you press any key
They may be deleted if you have a "newest" HP-41: simply press ENTER” ON to stop the program
306 ?A<C S&X
283 JNC-48d Replace this line by 2A3 JNC-44d if you don't key in the yellow instructions
0B5 ?NCGO
0A2 DATA ERROR if the "previous" register is R10, the sudoku cannot be solved! (@E42B in my ROM)

(229 words / SIZE 019)
STACK INPUTS OUTPUTS
X / /

-To use the M-Code routine, we must place the cells in nybbles 11 to 3 of registers R01 to R0O9 and the same data in R10 to R18.
-So the cells of a row must be the fractional part of a real number whose integer part is between 1 and 9

-The short routine hereunder lets the HP-41 deal with the registers R10 to R18.

01 LBL "SUD"
02 1.010009
03 REGMOVE
04 SDK

05 END

Examples: The examples of the 1st paragraph are now solved in 22 seconds and 50 seconds respectively.

A more difficult example: With the grid:

090042010
005[000]000
300[000]904
000[000]193
520[700]006
000[001]000
900050060
000[204]007
000[016]800

1.090042010 STO 01
1.005000000 STO 02
1.300000904 STO 03
1.000000193 STO 04
1.520700006 STO 05
1.000001000 STO 06
1.900050060 STO 07
1.000204007 STO 08
1.000016800 STO 09 XEQ "SUD" (not SDK') returns a solution in 42mn44s

-The same solution is returned in 1mn28s (!) if we store the columns instead of the rows.
(1.003050900 STO 01 1.900020000 STO 02 1.004360070 STO 09)

-The solution is in registers R01 thru R09:

w A~
o = ©
N o o
-~ © o®
o ~N &
oW N
© o w
AV RN
IS

http://hp41programs.yolasite.com/sudoku.php 15/12/2011

hp4lprograms Page 8 of 9

6741528193

5211739486

839461752

943|857|261

1861294537

2571316849
Notes:

-R00 is unused. Synthetic registers P & Q are used. Register P is cleared at the end if a solution has been found.

-Of course, here again, a good emulator like V41 in turbo mode will reduce the execution times by a factor about 600.
-So, many more puzzles can be solved in this case.
-Several minutes may still be required however (perhaps hours in very difficult cases ...)

-You can also help your HP-41 in many ways:

-For example, if the last row is empty and the 8th row is not, swap them (R0O8 <> R09)

and swap these registers again when the solution is found.

-Remember that the search starts with the last digit of register R09 then the next to last (i-e 8th) digit of R09 and so on ...

3°) Creating a Grid

-This program uses a solved sudoku (lines 08 to 25), then it randomly permutes raws and columns
and stores this - solved - sudoku in registers R19 to R27 (lines 127-128).
-Finally, cells are replaced by 0 to get a puzzle with N fixed cells, where N is to be specified by the user.

-Line 126 is a three-byte GTO 01.

http://hp41programs.yolasite.com/sudoku.php 15/12/2011

hp4lprograms Page 9 of 9

(321 bytes / SIZE 028)
| STACK | INPUTS | OUTPUTS
| Y N |
X | r |

where N is an integer between 1 and 81 to get a puzzle with N non-empty cells
and r is arandom seed

Example: You want to get a sudoku with 28 non-empty cells, and you choose 1 as random seed.

28 ENTERA
1 XEQ"GRID" and we get the grid in registers RO1 thru R09

RO1 = 1.800600130
R02 = 1.003050004
RO03 = 1.000900068
R04 = 1.008016000
R05 = 1.005003800 (the integer part doesn't really matter)
R06 = 1.006500003
RO7 = 1.000361000
R08 = 1.600000307
R09 = 1.000005601

-So, the puzzle is

800[600]130
003]050]004
000]900]068
008[016]000
005]003[800
006[500]003
000[361]000
600[000[|307
000[005]|601

-If you don't solve the grid, one solution is in registers R19 thru R27
-In this example, "SDK" gives another solution.

Notes:

-Replace line 28 (5) by a larger integer if you think that the original grid is not enough shuffled.
-This routine does not always return a proper sudoku (i-e with a unique solution), especially if N is small.
-If it happens ... it's only by chance !

-If you have a "RAND" M-code function, replace all the RCL 00 R-D FRC STO 00 by RAND
replace lines 02-03-04 by 81 X<>Y
and simply put N in X-register before executing "GRID"

Make a Free Website with Yola.

http://hp41programs.yolasite.com/sudoku.php 15/12/2011

hp4lprograms Page 1 of 3

hp41programs

|

Home

564 Chords for the HP-41

Overview

-The following program (actually 2 routines) performs the Chords <> Notes conversion:
-"C-N" displays the notes of a given chord.
-"N-C" searches the chord(s) corresponding to (3 to 6) given notes without regard of order.

-"N-C" identifies 47 types of chords, namely (for example in C):

CMaj, CMin, C-, C/4, C5+,C5+ 9, C5+9-, C5-,C6, CMin6, C7, C7-, C7 5+, C7 5-, CMin7 , CMin7+ , CMin7 5- , CMaj7 , CMaj7 5+
CMaj7 5-, C7/4 , CMin7/4 , C7/6 , CMin7/6 , CMaj7/6 , Cadd9 , CMinadd9 , C9 , CMin9 , C9 5+, C9 5-, CMaj9 , CMin9 7+, C9+, C9-, C9- 5+
C9/6 , CMin9/6 , C11 , CMin11, C11+, CMaj11, C13 , CMin13 , CMaj13 , C13 9-, C13 5-9-

-Other notations are sometimes used, for instance, C13 (b5 b9) = C13 5-9- = thirteenth chord with diminished fifth and diminished ninth ...

-These chords are coded as follows: we use the relations A=0,Bb=1,B=2, ,Ab=11,A=12, ...
Let's take for example A11 (eleventh chord)

A11=ADbEGBD=0471014 17 whence, modulo 12: 047 1025 rearranged in increasing order: 02457 10
then we take the difference between 2 consecutive integers: 2-0=2,4-2=2,54=1,7-5=2,10-7=3

which finally yields 22123 for eleventh chords (the dominant doesn't change the final result)

22123 is the content of X-register at line 467 and similarly for the other chords.

-"C-N" finds the same chords, plus a few extra ones ...

"C-N" will work if the left part of the alpha string (after the dominant and a possible MAJ or MIN) is one of the following symbols:
13 11 11+ 9 9+ 9- 7 7+ 7- - /4 5+ 5- and if the rest of the string only contains one (or several) of the characters:
6 4 5+ 5- 7+ 7- 9 9+ 9- 11+

Program Listing

Data Registers: C-N: ROO =dominant; R0O1 = 11th or 13th ; R02 = 9th ; R03 = 7th ; R04 = 6th ; RO5 = 5th ; R06 = 4th ; RO7 = 3rd ; R08 = 1
N-C: R0OO = -------- ; RO1 to Rnn = the n notes of the chord (n<7)
R09-R10-R11: temp

Flags: /

Subroutines: /

-Line 01 = LBL "C-N" Chord >>>> Notes
-Line 177 = LBL "N-C" Notes >>>> Chord(s)

-Lines 17 to 21 eliminate the possible spaces (ASCII code = 32) at the left of the string.

-The characters different from A B C D E F G # b are simply ignored.

-The "append" character is denoted ~

-Lines 255 to 271 sort the content of registers RO1 thru Rnn in increasing order (n = the number of notes)

-Line 310 may be replaced by (1 space)
-Line 361 may be replaced by "7+ 5-"

-Line 373 may be replaced by "7+"

-Line 377 may be replaced by "7+ 5+"

-Line 392 may be replaced by "7 5+9-"

-Line 420 may be replaced by "9 7+"

-Line 445 may be replaced by "7+/6"

-Line 465 may be replaced by "11 7+"

-Line 476 may be replaced by "13 7+"

-Line 502 is a three-byte GTO

http://hp41programs.yolasite.com/564chords.php 15/12/2011

hp4lprograms Page 2 of 3

http://hp41programs.yolasite.com/564chords.php 15/12/2011

hp4lprograms Page 3 0of 3

(934 bytes / SIZE 012)
| STACK | INPUTS | OUTPUTS
I |

All the inouts/outputs are in the alpha "register"

"C-N" examples: Execution time = 20 to 50 seconds

"CMAJ" (or simply "C") XEQ"C-N" >>>> (TONE9) "CEG" 3notes: CEG

"c-" XEQ"C-N" >>>> (TONE9) "CEbGb" 3 notes: CEb Gb
"D7-" XEQ"C-N" >>>> (TONE9) "DFAbB" 4 notes: DF Ab B
"Bb5+ 9-" XEQ"C-N" >>>> (TONE9) "BbDGbB" 4 notes: Bb D Gb B
"Aadd9" (or"A 9") XEQ"C-N" >>>> (TONE9) "ADbEB" 4 notes: ADb EB
"A9" XEQ"C-N" >>>> (TONE9) " ADbEGB" 5notes: ADbEGB

"C#13 5-9-" (or "Db135-9-") XEQ"C-N" >>>> (TONE9) "DbFGBDBb" 6 notes: Db F G B D Bb

-You can add space(s) at the left or the right of the alpha string or between 2 groups of symboals,
for instance, you can key in: " CMAJ7 5+ "or" CMAJ75+", but nof "CMAJ 7 5 +"
and "Bb5+ 9-" but neither "Bb 5 +9-" nor"B b 5+9-"

"N-C" examples: Execution time = 17 to 80 seconds

"CEG" XEQ"N-C" >>>> (TONE9) "CMAJ"
R/S >>>> (BEEP) 0 (no other chord)
"DFAbB" XEQ"N-C" >>>> (TONE9) "Ab7-"

R/S >>>> (TONE9) "B7-"
R/S >>>> (TONE9) "D7-"
R/S >>>> (TONE9) "F7-"
R/S >>>> (BEEP) 0 (no other chord)

"ABCDbG#Ab" XEQ"N-C" >>>> (BEEP) 0 ('unknown chord)

"A#EbbF#B" XEQ"N-C" >>>> (TONE9) "Bb5+9-"
R/S >>>> (TONE9) "BMIN7+"
R/S >>>> (BEEP) 0 (no other chord)

-Strictly speaking, "Bb5+ 9-"= Bb D Gb B and "BMIN7+" = B D Gb Bb are not quite identical.
-Practically, however, they are usually obtained by the same fingerings on a guitar.

Notes: (| mean "remarks")

-Don't key in more than 6 notes before executing "N-C". All these notes must be different.
-You can key in several b and several # (for instance Bbb instead of A , C## instead of D)
-The character "#" (alpha shift SIN) doesn't appear very clearly on the HP-41 (35 XTOA would be better but not very easy to handle)
if you want to replace it by another one, replace lines 29 and 188 by the corresponding ASCII code (for example 100 or E2 if you replace "#" by "d")
-If you use the notations "7+" , "9 7+" , "11 7+" , "13 7+" which are equivalent to
"MAJ7" , "MAJ9" , "MAJ11" , "MAJ13" respectively, lines 57 to 67 may be deleted.
-Several bytes can be saved if you omit some spaces (for example line 449 "135-9-" instead of "13 5-9-") but the display is less legible.

-If you wish that "N-C" identifies another chord, say MIN/4 , insert CLX 322 X=Y? "MIN/4" after line 479
(the intervals between 2 consecutive notes of this chord are 3 2 2)

-Similarly, if you want to delete one of the chords, say MAJ7+ 5-, delete line 358 to 361 after replacing line 362 by 8 (instead of 7)
so that the next content of X-register is unchanged.

-If you key in "Cadd11" XEQ "C-N" you'll get " CEG" (the "11" will not be taken into account)
-In order to identify this chord, add 1 "11" 18 XEQ 07 after line 146.

Make a Free Website with Yola.

http://hp41programs.yolasite.com/564chords.php 15/12/2011

hp4lprograms

Page 1 of 3

p41~programs

Home

Morse Code for the HP-41

Overview

-Clifford Stern has written a superb Morse Code program which is listed in "Synthetic Programming made easy" by Keith Jarett.
-The following "MC" is far from being so good but it uses the ATOX function of the X-Functions module,
it can transmit more characters and it occupies less program memory.
-"MC" uses the synthetic TONE P (decimal codes = 159, 120) for . and the standard TONE 8 for _
-Forinstance, L=TONE P TONE8 TONEP TONEP = ._..

-Then, a second routine ("LMC") may help you to learn Morse code.

Warning:

-If the last executed tone is a synthetic tone (TONE P or another one),
my HP-41 emits a strange frrrrrrrr (press your ear against your calculator to check)
-Simply execute a BEEP or any non-synthetic TONE to remove this vibration

1°) Morse Code Program

Codes: (in the same order as the LBLs)

L= /= _.._ = _ 4 =

» = F = _ 7=__ _ V =

8 = R = _ B:_):_ = = o
Z = (:___ 6:_ Q:__ A = OR=RE
D = B — & _ K=_ , = O:___

;= L= ... 5=..... ==_ 3= M= __

+ = ‘= ____ H = $ 2 T=_

@ = 9=____ S = X=*= J space = a pause
C = G=__ = % = _ Y =

U= N = _ E = - = _ W =

Data Registers: /
Flags: /
Subroutines:/

http://hp41programs.yolasite.com/morse.php 15/12/2011

hp4lprograms Page 2 of 3

(305 bytes / SIZE 000)

-Store an alpha string of at most 24 characters in the alpha register and execute "MC"
-Do not use lower case letters.
-Use XTOA to store special characters in alpha (for instance, 64 XTOA adds @ to the alpha string)

Example: Place "HEWLETT PACKARD" in the alpha register , XEQ "MC" and you'll hear:

dih dih dih dit dit dih daah daah dih daah dih dit dit daah daah
dih daah daah dit dih daah daah dih daah dit daah dih daah dih daah dih daah dit daah dih dit

Notes:

-The XEQ IND X (line 09) is much faster if the program is executed from an HEPAX module.
-You can also transmit a message by groups of at most 6 characters, after storing them into contiguous registers Rbb thru Ree (bb > 0C

-Place the control number bbb.eee in X-register and execute "MESSAGE"

2°) Learning Morse Code

-This short routine transmits a random message of 1 to 24 characters among 12....9 ABC YZ
-You have to decipher the message.

Data Registers: » ROO = seed (initialize ROO before executing LMC)
RO1 thru R04 = the characters

Flag: F2e
Subroutine: "mc"

http://hp41programs.yolasite.com/morse.php 15/12/2011

hp4lprograms Page 3 of 3

TEE

(67 bytes / SIZE 005)

-Place a seed in R00 and the number of characters (between 1 & 24) in X-register and XEQ "LMC"
-Press XEQ 10 to repeat the message.

Example: 1 STO00 4 XEQ"LMC" >>>> dihdaah daah dih daah daah daah daah daah daah dit daah dih daah

-The message is AY9K (here in R01)

Reference:

[1] Keith Jarett - "HP-41 Synthetic Programming Made Easy" - Synthetix

Make a Free Website with Yola. |

http://hp41programs.yolasite.com/morse.php 15/12/2011

	This compilation: revision A.1.1.
	Copyright © 2011 Ángel Martin

